
Check how the experts do it

Shaping the future
of telecommunication

1

This collection of 23 interesting writings extensively covers four aspects of the program-

mer's work, including Advanced Technologies, System Engineering, System Development,

and Best Coding Practices. The book takes a broad view of current trends in programming,

and is of great educational value due to its accessible language and real-life case studies.

Therefore, I am very pleased to introduce you to this anthology, and thank the authors for

their passion and willingness to share, hard work, and outstanding contributions.

I wish you a pleasant read,

Bartosz Ciepluch
Head of Nokia Networks European Software
and Engineering Center in Wrocław

Dear Readers,

I am thrilled to present to you another joint
eff ort of employees of Nokia Networks European
Software and Engineering Center in Wrocław:
“Shaping the Future of Telecommunication.
Check How the Experts Do It.”

Nokia Shaping the future of telecommunication. Check how the experts do it. 3

MBB Liquid Core

 Advanced Telecommunication
Technologies

Telecommunication System
Engineering

Professional Software
Development

Best Engineering Practices

 1.1 — Przemysław Szufarski On Telco Cloud Edge: FlexiCMD Contribution
 into Nokia’s Concept for NFV

 1.2 — Bartłomiej Dabiński Cloud Security – Risks Brought by Virtualization
and Marcin Otwinowski

 1.3 — Karol Drażyński 5G for Mission Critical Machine Type Communications
and Maciej Januszewski

 1.4 — Sławomir Andrzejewski, Ireneusz Jabłoński, Big-data-driven Telco Market
John Torregoza, Krzysztof Waściński

6

12

20

26

40

46
54
60
64
72

80
88
96

104

112
120
126

136
142
148

154
162
170

 2.1 — Grzegorz Olender LTE-Advanced – Mobile Broadband Network Technology
 of Tomorrow, Available Today

 2.2 — Michał Koziar and Zdzisław Nowacki OBSAI and CPRI – Internal Transport Interfaces in Base Stations
 2.3 — Radosław Idasiak LTE Global Verifi cation – Testing In End-to-End Environment
 2.4 — Szymon Góratowski Determining the Priorities of eNodeB Software Tests
 2.5 — Marek Salata LTE L1 Call: The Necessary Condition for LTE Testing
 2.6 — Krzysztof Kościuszkiewicz and Karol Sydor Digital Linearization of RF Transmitters

4

38

78

134

 3.1 — Sławomir Zborowski C++17 – the Upcoming Standard
 3.2 — Krzysztof Bulwiński Make It Simple: Java Generics
 3.3 — Bartosz Kwaśniewski Functional Reactive Programming Paradigm in JavaScript
 3.4 — Bartosz Woronicz Python: A General-purpose Language with

 a Low-level Entry Barrier
 3.5 — Michał Bartkowiak Beginning the Adventure: Writing a Minimal Compiler
 3.6 — Krzysztof Garczyński and Piotr Rotter U-Boot: How Linux is Loaded on Embedded Systems
 3.7 — Łukasz Grządko Tuning the Algorithms for Bin Packing Problem

 4.1 — Tomasz Krajewski Object-oriented Programming Best Practices
 4.2 — Dawid Bedła SOLID Principle – Finding the Root
 4.3 — Andrzej Lipiński A Brief Introduction to the Software Confi guration

 Management
 4.4 — Marcin Gudajczyk Advanced Branches Utilization in Subversion and Git
 4.5 — Tomasz Prus From Customer Documentation to User Experience
 4.6 — Maciej Kohut Design for Security

Nokia Shaping the future of telecommunication. Check how the experts do it.44

Advanced Telecommunication Technologies

On Telco Cloud Edge:
FlexiCMD Contribution
into Nokia’s Concept for NFV

Przemysław Szufarski
System Product Manager
MBB Liquid Core

 Advanced
Telecommunication
Technologies

Przemysław Szufarski
On Telco Cloud Edge: FlexiCMD
Contribution into Nokia’s Concept for NFV

6

Bartłomiej Dabiński and Marcin Otwinowski
Cloud Security – Risks Brought
by Virtualization

12

Karol Drażyński and Maciej Januszewski
5G for Mission Critical Machine
Type Communications

20

Sławomir Andrzejewski, Ireneusz Jabłoński,
John Torregoza, Krzysztof Waściński
Big-data-driven Telco Market

26

1.1 1.2 1.3

1.4

Nokia Shaping the future of telecommunication. Check how the experts do it. 7Nokia Shaping the future of telecommunication. Check how the experts do it.66

Advanced Telecommunication Technologies

On Telco Cloud Edge:
FlexiCMD Contribution
into Nokia’s Concept for NFV

 Przemysław Szufarski
System Product Manager
MBB Liquid Core

Introduction
In recent 30 years, there have been but a few technology turna-
rounds which are also cornerstones of mobile communications. The
capability to migrate from analog to digital communication resulted
in a GSM revolution in the 90s, migration from circuit-switched to
packet-switched networks, and all-IP networks were a prerequisite
for a Smartphone revolution in 2007. I believe that Telco Cloud tech-
nologies may have a similar impact on the future: opening network
capabilities for a new user experience.

1. Telco Cloud and its environment
Telco Cloud standardization is driven by the Network Function Vir-
tualization Industry Specifi cation Group (NFV ISG) within the Euro-
pean Telecommunications Standards Institute (ETSI). The standard
defi nes Virtualized Network Functions (VNF) and related supporting
components (see Figure 1).

The standard introduces a new class of components (NFV Orches-
trator, VNF Manager, and Virtualized Infrastructure Manager) ded-
icated to cloud management. Those components are expected to
support cloud’s fl exibility.

The standardization is setting a blueprint for network layout, but it
is only one of many triggers for network migration. Moreover, the
network may never reach the blueprint layout which was a target
for migration! Interworking of existing network functions and new
VNFs is a challenge which needs to be taken into careful consider-
ation from the very beginning of cloud introduction. Obviously, an
adaptation to the legacy network is up to Cloud-based VNFs, new
components in the Communications Service Provider (CSP) net-
work.

2. VNF over NF
The key components of the NFV architecture are Virtualized Net-
work Functions (VNFs), replacing existing “bare metal” network
nodes. Those components replace hardware-based components
such as Call Session Control Function (CSCF), Mobility Management
Entity (MME), or Charging Gateway Function (CGF).

However, NFV gains over the classic approach are mainly due to
features which can be realized only with both components: the NFV
architecture (see Figure 1) and related features of a specifi c VNF.
The e2e architecture covers interworking of all network domains,

Figure 1 ETSI NFV scheme.

Virtualization Layer

Network
Hardware

Computing
Hardware

Storage
Hardware

VNF 2 VNF 3VNF 1

EM 2 EM 3

NFV
Orchestrator

EM 1

Virtual
Storage

Virtual
Network

Virtual
Computing

NFVI

Hardware Resources

Main NFV reference pointsOther reference points

Virtualized
Infrastructure

Manager(s)

Service, VNF and
Infrastructure Description

VNF
Manager(s)

Or-Vi

Vl-Ha

Nf-Vi

Ve-Vnfm

Or-Vnfm

Vi-Vnfm

Se-Ma

Os-Ma

Execution reference points

OSS/BSS

Vn-Nf

Nokia Shaping the future of telecommunication. Check how the experts do it. 9Nokia Shaping the future of telecommunication. Check how the experts do it.8

exchange of roaming CDRs, integration with revenue assurance/
fraud detection.

The main advantage of FCMD is deployment as VNF, part of the Telco
Cloud. This allows to ensure proper handling of Telco Cloud specifi c
technologies, i.e. elasticity and orchestration; FCMD is capable to re-
duce charging the data stream towards BSS (aka BSS offl oading) via
aggregation and correlation functionalities. Additionally, it is capable
to act as a buff er between Core and BSS domains. These functions
enable FCMD to cope with the mismatch between cloud and non-
cloud network parts. Remaining VNFs may use FCMD as a default,
pre-integrated destination point of charging interfaces, which re-
sults in a simplifi cation of the VNF’s architecture and a more fl exi-
ble Telco Cloud–BSS integration. Another opportunity for an FCMD
deployment in the cloud is a traffi c correlation capability between
VNFs, e.g. S/PGW and TAS, which results in a reduction of the amount
of data sent towards BSS (reducing Billing System’s capacity require-
ments) and provides additional extended information about sub-
scriber’s usage collected and correlated from diff erent network ele-
ments. A high-level concept of the solution is presented in Figure 3 .

An FCMD internal concept for correlation of charging data streams
is based on a defi nition of FCMD internal workfl ows. Workfl ows
dedicated to a particular VNF are able to receive, aggregate, and
standardize the format of data charging. Then, an additional layer of
workfl ows allows reducing the amount of outgoing information by
correlating the data streams from selected VNFs. A workfl ows map
for offl ine charging aggregation and correlation between Flexi NG,
IMS, and Open TAS is presented in Figure 4 .

To ensure proper handling of performance, availability, elastici-
ty, and orchestration requirements, the FCMD deployment will be
based on multiple instances of described workfl ows. When an inter-
nal FCMD interface between workfl ows is ready for that, the imme-
diate challenge becomes the integration with external data sources.
FCMD has been pre-integrated on a product level with leading Liquid
Core VNFs: Flexi NG Cloud, IMS Cloud, and Open TAS Cloud. An ex-

4. Paving the ground towards NFV
The NFV concept is a quite fresh idea for Telco operators. It needs
to be pointed out that the NFV standardization is in a very early
stage in mid-2015, and there are many areas not covered by the
standard yet. The very basic assumption is that standards pro-
vide a capability to use the equipment of diff erent vendors to-
gether. It is believed that the measure of VNF concept’s maturity
could be the number of public references where diff erent Telco
Infrastructure Providers deployed their VNFs on a common NFVI.
Until now, the number of such references has been very limited, if
existing at all.

Nokia has started fi rst commercial deliveries of Virtualized Network
Functions and launched a number of demonstrations and trials to
present our leadership in implementation of the NFV concept in gen-
eral. Nokia took a bold step and is turning an entire portfolio of our
Mobile Core products into VNFs.

Flexibility of Virtualized Network Functions requires special atten-
tion on the cloud edge, where fl exible interfaces are terminated.
Service Orchestration, Software Defi ned Network, and Virtualized
Network Functions are the terms which in reality may be applicable
to a part of the CSP network only. A proper solution to the transfer
of Telco Cloud traffi c to legacy components shall be introduced as
part of network’s modernization. Nokia’s solution to a seamless in-
tegration of cloud and non-cloud environments, especially the Core
Network (CN) and Business Support System (BSS) domains, is Flexi
Converged Mediation Device (CMD). The design of FCMD has been
adapted to ensure interworking with cloud and non-cloud network
components.

5. Unifi ed charging interface of Liquid Core
The Flexi Converged Mediation Device (FCMD) is used for integrat-
ing mainly the CN and BSS domains. It provides converged medi-
ation capabilities such as the Unifi ed Charging Gateway Function
or Charging Data Function with possible extensions: Charging
Gateway Network Address Translation (CGNAT) logs collection,

ensuring integration of legacy networks with VNFs. Virtualized
Network Functions with Cloud Management and an Orchestration
layer provide new functions to the CSPs. The fully cloudifi ed VNFs
would ensure a CSP competitive advantage due to the following
features:

• Elasticity: where VNFs’ capacity may be adapted to increased or
reduced capacity demands

• Orchestration: where VNFs’ cloud resources and interfaces are
adapted by the Orchestrator according to current services

• Hardware-Software Lifecycle separation: more frequent
software upgrades can be separated and become independent
of a hardware upgrade, and hardware-related activities do not
harm existing services provided by VNFs

• Automated Software Lifecycle: where VNFs are upgraded to new
software version and enriched with new functions

• Hardware Independence: VNF could be launched on any hardware
being part of the cloud

Merely the few features mentioned above are opening new oppor-
tunities for CSPs. For example, instead of an independent lifecycle
of hundreds of hardware (HW) components, there is just one HW line
to be looked after. Among many other benefi ts, HW standardization
is the most obvious one. A better utilization of HW resources due to
elasticity and orchestration allows increasing savings of the cloud-
based infrastructure. With the NFV concept, the capacity overhead
required to ensure service availability may be signifi cantly reduced
as well and quickly adjusted to current needs due to orchestration
and elasticity functions. In general, the infrastructure will be better
tailored and more adaptive to the end-user’s and CSP’s needs. With
such tools, CSPs will be able to reconfi gure their networks to opti-
mize capacity for an actual mix of use cases (e.g. increasing VoLTE
traffi c) in the blink of an eye.

NFV features with a very high potential are Automated Software
Lifecycle together with Service Orchestration. Those may reduce
the innovation cycle from months to days or even more and auto-

mate it. Such a foundation allows CSPs to build innovative services
in a similar way to Smartphone vendors by providing a platform for
independent developers, with a capability to program network ser-
vice, deploy and verify it with end users. Commercialization models
are not yet available, but we may learn very quickly from the existing
models of Smartphone Apps how to build communities around mo-
bile carriers.

3. Facing the consequences of cloud orchestration
Orchestration allows streaming cloud capacity to dedicated ser-
vices. It enables growth and termination of services in a much
shorter period of time and with lower average resource utilization.
This is achieved by a dynamic allocation/release of cloud resourc-
es to VNFs and a capability for VNFs’ re-confi guration. With this
function, the cloud will adapt the network to the needs of servic-
es, optimizing and re-confi guring it within days instead of months.
These are the expectations shared both by CSPs and Infrastruc-
ture Providers at the Mobile Word Congress in Barcelona in 2015.
Examples of scenarios for cloud orchestration:

• traffi c transition between VNF instances, graceful termination of
a VNF instance

• traffi c split/offl oading from one VNF among other VNFs
• network reconfi guration, deployment of new VNF instances

within the network

What are the consequences of the orchestration in a cloud for lega-
cy networks? As presented in the example in Figure 2 , the number
of Network Gateways may be increased or decreased based on or-
chestration requests.

Both scenarios, the expansion and reduction of VNF instances,
are not expected to be performed on a daily basis in “bare met-
al” systems and, therefore, require special handling. In such a case,
a smooth conversion of VNF interfaces needs to be foreseen via
a Software Defi ned Network (SDN), load balancing, or mediation
supporting VNFs’ interfaces.

Figure 2 Example of VNF elasticity. Figure 3 High-level concept for signaling reduction in IF charging.

IMS

EPC

TAS

CMD

BSS

Liquid Core Cloud

i
Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Gateway Application

Gateway VM

Gateway

U-PlaneGateway

U-Plane

Nokia Shaping the future of telecommunication. Check how the experts do it. 11Nokia Shaping the future of telecommunication. Check how the experts do it.10

About the author

I am a graduate of Electronics, Telecommunications
& Informatics faculty of Gdańsk University of
Technology. I work as a System Product Manager in
MBB Liquid Core Technical Management. In Liquid Core,
we build future Core Networks, which are delivered
faster and are more fl exible. The main responsibility
of the Technical Management team is to transform
innovative ideas into enterprise class software
products; it is a both challenging and inspiring role.

Przemysław Szufarski
System Product Manager
MBB Liquid Core

ample of the interface between FCMD Cloud and Flexi NG Cloud is
presented in Figure 5 .

In the example, the Flexi NG registers each FCMD’s workfl ow as an
independent Charging Gateway. Each FNG Node distributes charg-
ing data based on a sticky round robin algorithm (traffi c is evenly
distributed, but a single session is sent to the same instance) to all
available FCMD workfl ows. In case of an extension with FNG Nodes,
a list of valid FNG Nodes is updated on FCMD. In case of new FCMD
Processing VMs, a list of valid FCMD Processing VMs is updated on
the FNG. This ensures automatic handling of orchestration, elastici-
ty, and VM recovery (availability) scenarios.

6. Conclusion
Nokia’s FCMD component is an excellent solution to integrate Tel-
co Cloud with the existing Business Support System. It has been
pre-integrated with Nokia’s VNFs and is ready for further integra-
tion based on Customer needs.

FCMD Cloud 16 is an initial FCMD release integrated with Liquid Core
Cloud, Nokia’s concept for Telco Cloud. FCMD 16 has all benefi ts of
Telco Cloud integration, i.e. automated deployment and high availa-
bility. It has been pre-integrated with Nokia’s VNFs: Flexi NG 16, IMS
16, and Open TAS 16 and supported by Nokia’s Telco Cloud compo-
nents: NCI O16 and CAM O16.

References
[1] Nokia, Telco Cloud Management: http://info.networks.nokia.com/

telco_cloud_management_lp.html
[2] ETSI GS NFV 002, Network Functions Virtualisation (NFV);

Architectural Framework
[3] ETSI GS NFV 003, Network Functions Virtualisation (NFV);

Terminology for Main Concepts in NFV
[4] Nokia, Reinvent FCMD for the Cloud, D496975900

Figure 5 Connectivity between VNFs: FCMD – FlexiNG.Figure 4 FCMD workfl ows map for traffi c correlation and aggregation.

Productized Collection Workflow

IMS Processing IMS Aggregation Workflow

IMS

OpenTAS

Diameter TAS WF

IMS TAS Correlation Workflow

FTP
GTP’

Customer-specific Workflow

Flexi CMD

TAS Aggregation Workflow(CMCC)

Customization Template
(add-o)ASN.1/

MSS

FTP
(ASN.1)

Fallback IMS Processing

Rf/Bi

FNG Processing

IMS FNG Correlation Workflow

Rf/Bi/Bc

FNG

FTP Fallback TAS Processing

FTP

Interface
Node 1

Interface
Node 2

CG List
CMD 1 prio1 IP1

CMD 2 prio1 IP2

CMD 3 prio1 IP3

Flexi NG tenant

GTP’

 Flexi CMD
processing VM

vCMD 1

vCMD 2

vCMD 3

Gateway
Node 1

Gateway
Node 3

Gateway
Node 2

Nokia Shaping the future of telecommunication. Check how the experts do it. 13Nokia Shaping the future of telecommunication. Check how the experts do it.1212

Advanced Telecommunication Technologies 1. Introduction to cloud virtualization
Virtualization is a technology that abstracts logical resources (com-
puting, storage, and networking) from physical hardware. It enables
highly fl exible, effi cient, and scalable system architectures that
off er instant creation of diff erentiated and personalized services.
There is no doubt that virtualization has turned out to be the mar-
ket disruptive technology and has also been the enabler of cloud
computing, another revolutionary business concept.

NFV (Network Functions Virtualization) is an approach proposed by
ETSI (European Telecommunications Standards Institute) that aims to
deliver a high-level specifi cation of the standardized architecture of
virtualized telco networks. The fundamental goal of NFV is to consoli-
date many network equipment types onto industry standard servers,
network nodes, and storage, which could be located in a variety of
network PoPs (Points of Presence) including datacenters and end user
premises [1]. This enables the abstraction of a standard, virtualized
environment for operating VNFs (Virtual Network Functions).

While traditional networks rely on fragmented vendor-specifi c hard-
ware, in the NFV approach network functions are implemented in
software that can run on generic industry standard servers. De-
riving hardware from software enables independent upgrades of
each layer of the system, simplifi es scaling, and brings elasticity in
various load conditions because the software can dynamically be
moved to another location.

2. NFV infrastructure overview
The NFV architectural framework shown in Figure 2 specifi es the
functional blocks and the interfaces between them. The roles of the
blocks and their interconnections are briefl y described below. The
components that are the main focus of NFV are MANO (Management
and Orchestration) blocks and NFVI (Network Functions Virtualiza-
tion Infrastructure). The other components (OSS/BSS, EMs, NFs) are
available in present deployments and as such they are external to
the NFV perspective. Nevertheless, the interfaces between them
and the NFV components are in the scope of ETSI works.

Cloud Security – Risks Brought
by Virtualization

 Bartłomiej Dabiński
Security Solution Engineer
MBB Security

Marcin Otwinowski
Integration and Verifi cation Engineer
for Security
MBB Security

Figure 1 Comparison of a traditional and virtualized networking approach [2].

Firewall

SGSN/GGSN

Message
Router

Session Border
Controller

Radio Network
Controller

Carrier
Grade NAT

PE Router

DPI

Classical Network Appliance Approach Network Functions Virtualization Approach

Generic High Volume
Servers, Storage, and Switches

Orchestrated,
automatic
remote install

Independent Software Vendors

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Virtual
Appliance

Nokia Shaping the future of telecommunication. Check how the experts do it. 15Nokia Shaping the future of telecommunication. Check how the experts do it.14

First of all, there is a need to build a profi le of a potential attack-
er. Nowadays, generally, we can categorize them into three main
groups [2]:

• group 1: criminal members of the general public (including
former and current employees of network operators),

• group 2: coordinated small groups, such as criminal gangs or
terrorist organizations,

• group 3: coordinated large organizations with a political,
religious, or commercial agenda, e.g. government agencies,
corporations.

• From the perspective of NFVI, diff erent dimensions of attacks
can be observed. The following are some examples as related to
the aforementioned three categories [2]:

• end customers of retail network operators (applicable to all three
groups),

• retail network operators (in most cases group 2 fi ts here in terms
of industrial espionage),

• wholesale network operators (groups 2 and 3),
• hypervisor operator – usually the same party as either the

infrastructure operator or the wholesale network operator
(groups 1 and 3),

fl ows between VNFs. The links can be unidirectional, bidirectional,
multicast, and/or broadcast. Figure 3 shows a simple example of
an end-to-end service. The constituent VNFs can include a load bal-
ancer, fi rewall, CDN network etc. The end point devices, which are
usually customer-owned equipment e.g. mobile phones, are outside
the scope of NFV.

3. NFV from a security perspective
The ETSI NFV model does not include any security elements by de-
fault. The next chapters indicate that it should be extended in the
future by security components. This paper focuses on security risks
and aspects brought on by the virtualization of network functions.
Threats generated by specifi c virtualization environments (e.g. re-
cently discovered buff er overfl ow related VENOM vulnerability in
QEMU FDC controller) are outside the scope of the paper. General
security aspects of network elements (DoS protection, routing se-
curity etc.) are also beyond the scope. The paper indicates new se-
curity vulnerabilities that should be taken into consideration when
combining generic virtualization vulnerabilities with generic network
vulnerabilities. Nokia is currently developing its own security solu-
tion for virtualized environments. It is called Cloud Security Director
and is complementary to the ETSI NFV model.

NFV MANO components:
NFV Orchestrator – manages the network services’ lifecycle, sup-
ports and coordinates the operation of VNF Manager and VIM to
ensure an optimized allocation of the resources [7]. CND (Cloud
Network Director) is a Nokia product implementing the NFV orches-
tration functions.

VNF Manager(s) – is responsible for VNF lifecycle management (e.g.
installation, update, query, scaling, and termination). For diff erent
groups of VNFs, multiple VNF Managers may be deployed [6]. CAM
(Cloud Application Manager) is a Nokia commercial VNF Manager.

VIM(s) (Virtualized Infrastructure Manager(s)) – controls and man-
ages the interaction of VNFs and NFVI resources. VIM collects in-
formation for capacity planning and allocates VMs with required
computing, storage, and networking resources. VIM monitors the
performance and health status of VMs [8].

VNF Forwarding Graph (VNF-FG)
A forwarding graph (also referred to as a service chain) is an abstrac-
tion of a network service. Nodes of the graph are individual VNFs,
VNF sets, or other (nested) VNF-FGs. Graph edges represent data

OSS/BSS (Operations Support Systems/Business Support Sys-
tems) – computer systems used by telco providers for functions
such as performance management, fault management, network
confi guration (OSS components) and payment management, order
management, revenue management, and customer management
(BSS components) [3][4].

EM (Element Management) – performs typical management tasks
and supports the abstraction of the network elements implement-
ing VNF(s). EM may also maintain statistics, logs, and other data con-
cerning network elements [5].

VNF (Virtual Network Function) – is a concept representing the
equivalent of a network node or a physical appliance in a traditional
network. VNF usually consist of one or many virtual machines run-
ning on NFVI [7].

NFVI (NFV Infrastructure) – all hardware and software components
that build up the environment in which VNFs are deployed, man-
aged, and executed. From the VNF perspective, NFVI forms a single
entity providing the VNF with resources (computing, storage, and
networking) [6].

Figure 2 NFV reference architectural framework [6]. Figure 3 A chain of VNFs is a simple example of VNF-FG [6].

Virtualization Layer

Network
Hardware

Computing
Hardware

Storage
Hardware

VNF 2 VNF 3VNF 1

EM 2

OSS/BSS

EM 3

NFV
Orchestrator

EM 1

Virtual
Storage

Virtual
Network

Virtual
Computing

NFV Management and Orchestration

NFVI

Virtualized
Infrastructure

Manager(s)

VNF
Manager(s)

VNF-1

VNF-2A

VNF-2C

VNF-FG

Virtualization Layer

End-to-end network service

Hardware
Resources
in Physical
Locations

VNF-2B

VNF-3
End

Point

Legend

NFVI-PoP

Physical link
Logical link

Virtualization

End
Point

Nokia Shaping the future of telecommunication. Check how the experts do it. 17Nokia Shaping the future of telecommunication. Check how the experts do it.16

AAA (Authentication, Authorization, and Accounting)
The next challenge involves user/tenant Authentication, Author-
ization, and Accounting. Figure 4 presents an exemplary sce-
nario.

Users or admins may need access to VNFs that are separated in
diff erent clouds/VLANs (horizontal access). At the same time, they
may use or manage entities in diff erent layers (VNFs, hypervisors),
hence vertical access is also required. This scenario causes a com-
plex roles-and-privileges matrix, which is prone to error. There is no
simple solution to this issue. An account manager needs to grant
access to users and tenants very carefully, because granting access
unreasonably can be dangerous. It should be remembered that, in
terms of security, it is always better to grant less access than give
more access than needed.

crash because some of those resources could be shared or will
be reused in the future. Therefore, such information should be
defi ned manually.

• Swap storage attached to a VM:
If a VM uses swap storage it should be marked for hypervisor as
“swap”. In this case, the hypervisor will know that it should be
wiped in case of a crash.

Performance and Isolation
Another issue related to virtualized infrastructure is an attack on the
resources that are used by a VNF. There is one simple rule: all the
resources of the VNF (except explicitly shared resources) must be
separated from other VNFs. However, the weakest point is the virtu-
alization host because if an attacker gains access to it, he will be able
to crash the system, degrade performance, or even wipe all the VNFs.

platform. Respectively, the provider would rather be sure that the
VNFs are genuine.

Nonetheless, as it is commonly believed that control is more effi -
cient than trust, there are mechanisms that verify the authenticity
and integrity during a booting process [2]:

• local attestation
• remote attestation
• attribution
• authenticity
• confi guration management
• certifi cates
• cryptographic keys
• digital signatures
• hardware-specifi c features

Some good examples of technologies that can be used here are
TPM (Trusted Platform Module), which gives the benefi t of hardware
built-in cryptographic algorithms and TXT (Trusted Execution Tech-
nology), which attests the authenticity of the used platform and op-
erating system. A very important thing to consider here is the trust
chain, that is, secure runtime can be considered secure if it is pro-
vided by a secure boot, and a secure boot has to be performed on
trusted hardware. Lack of trust/security in one of the links results in
an untrusted/insecure environment.

Secured crash
Along with the verifi cation of booting and starting phases of a virtu-
al machine, securing the crash of the VM should also be discussed.
Some points of concern are highlighted below [2]:

• VNF components: (in general VMs that are running on
a hypervisor)
The hypervisor should ensure that unauthorized entities may
not have access to any fi le references, hardware pass-through
devices, or memory that was left by a crashed VM. The same
applies to a crashed application inside a VM. In this case, the
hypervisor should assure that the crash of the application will
not make any authorization changes. This task is harder to
perform by the hypervisor because it could be unaware of the
application failure.

• References on remote devices to a crashed VM machine:
Hypervisor should be able to ensure that a newly launched
VM will not adopt addresses that were recently used by
a crashed machine. Otherwise, the new VM would be able to
exploit privileges of the crashed VM and thus grant access to
unauthorized parties. This could be mitigated by mandatory
authentications performed before requesting certain resources.

• Local and remote storage resources attached to a VM:
It is impossible for the hypervisor to determine autonomously
which part of an attached storage should be wiped after a VM

• infrastructure operators – the party that operates the
computing, storage, and infrastructure network (groups 1 and 3),

• facility manager – the party that secures the physical building,
racking, power, cabling, etc. (group 1).

4. Vulnerabilities analysis and techniques to fi x them
First and foremost, vulnerabilities must be properly identifi ed and
analyzed. Otherwise, one can consider that virtualization in fact is
just another layer of software that emulates hardware, and both of
them (emulated hardware and software that performs emulation)
need only to be patched to secure the system. In this chapter, how-
ever, it is assumed that virtualization is actually a separate layer that
brings new challenges.

Complexity of environment
One such challenge is strictly connected to complexity. It is easy
to imagine a very complex environment where physical and vir-
tual layers of a network interfere and infl uence each other, espe-
cially when not a private virtual cloud but a shared one is consid-
ered. Poor planning and infrastructure deployment (both physical
and virtual) can imperceptibly lead to a loss of control over the
environment. This can then lead to accidental access to compa-
ny-sensitive data across the shared cloud infrastructure. There is
a signifi cant threat here because some companies may actually try
to perform industrial espionage activities. Therefore, an environ-
ment cannot be assumed secure unless the exact confi guration of
physical and virtualized layers is known and the resources operator
is trusted. Moreover, unknown confi guration cannot be properly
verifi ed. It is a matter of uttermost importance since an incorrect
confi guration, in an extreme case, can lead to a situation in which
accidently (or maliciously) the entire datacenter is deleted by a sin-
gle command.

Things should be as simple as possible, but not simpler – Albert Ein-
stein used to say. Yet he probably did not have telco cloud environ-
ments in mind, this rule is very purposeful in this area. Correct plan-
ning and designing of such an environment is crucial for the future
operation and secure separation of each virtual space. A relevant
example here is the separation of the management network. Physi-
cal separation is favored in security aspects, but it could be prohib-
itively expensive to implement such a solution in real life. Therefore
it is usually a trade-off between maximum security and a reasonable
price (a combination of physical and logical separation). A general
recommendation is that everything which is stored in a cloud should
be carefully selected and well protected. Rotation and shredding
mechanisms for old data should also be planned.

Secured boot and runtime
The next security issue is related to trust. Especially when access
to a physical infrastructure is not provided or hypervisors are un-
der a third party’s control. A network operator has to trust a host-
ing provider suffi ciently to run VNFs on the provider’s virtualization

Figure 4 Example of multi-layered identities [2].

NSP

VNF VNF
VNF

VNFVNF

VNF
VNF

VNF

VNF
VNF

VNF

VNF
VNF

VNF

VNF Forwarding Graph

VNPaaS

VNFaaS

VNF Tenants

NFVlaaS

User

Admin
User

Admin
User

Hosting Service Provider

SaaSPaaSPaaSNaaS

NFVI Provider

NaaSIaaS

Nokia Shaping the future of telecommunication. Check how the experts do it. 19Nokia Shaping the future of telecommunication. Check how the experts do it.18

I have worked for two years as a Network Specialist
and three years as a Network Security Specialist.
My interests are related to security in networks,
especially social engineering techniques and methods
of protecting multi-layered complex environments.
Currently I am working in the MBB Security
department. My scope of work is related to the
integration of Nokia Network Access Guard.

Marcin Otwinowski
Integration and Verifi cation Engineer for Security
MBB Security

About the authors

I have received the M.Sc. in ICT from the Wrocław
University of Technology, and am now a Ph.D. student
at the Institute of Informatics. My professional
and scientifi c interests are focused on multi-
layered virtualization of network resources and
QoS mechanisms. Today I work in the MBB Security
department with Nokia Cloud Security Director, whose
purpose is to secure telco cloud environments.

Bartłomiej Dabiński
Security Solution Engineer
MBB Security

5. Conclusion
Virtualization is a powerful technology and, when designed properly,
it can bring meaningful benefi ts including improved security. Never-
theless, more power means more responsibility and the deployment
of any cloud environment needs special attention. Virtualization
has the potential to make network management simpler because
of off ered abstraction, yet it always makes the network structure
more complex by introducing an additional layer in the system ar-
chitecture. This virtualization layer has specifi c vulnerabilities, which
brings new challenges for cloud network security architects and en-
gineers. Neglecting this fact may cause fatal consequences since
the security of any system is as strong as its weakest element.

References
[1] ETSI GS NFV 001, Network Functions Virtualisation (NFV); Use Cases.
[2] ETSI GS NFV-SEC 001, Network Functions Virtualisation (NFV);

NFV Security; Problem Statement.
[3] Operations support system. (2015, January 18). Retrieved June 5,

2015, from http://en.wikipedia.org/wiki/Operations_support_
system

[4] Business support system. (2015, June 3). Retrieved June 5, 2015,
from http://en.wikipedia.org/wiki/Operations_support_system

[5] ITU-T Recommendation M.3010 (2000), Principles for a tele-
communications management network.

[6] ETSI GS NFV 002, Network Functions Virtualisation (NFV); Archi-
tectural Framework.

[7] ETSI GS NFV 003, Network Functions Virtualisation (NFV); Termi-
nology for Main Concepts in NFV.

[8] ETSI GS NFV-MAN 001, Network Functions Virtualisation (NFV);
Management and Orchestration.

Time synchronization
The next concern that should be taken into account is related
to time synchronization. The date & time settings are usually
synchronized by hypervisor, which is the single source of time
for all VNFs [2]. Therefore, manipulation of the time settings on
the hypervisor aff ects all VNFs. Nonetheless, if an attacker gets
unauthorized access to it he will be able to perform much more
severe attacks against the cloud ecosystem than simple time ma-
nipulation.

Private keys distribution and storage
When discussing security, concerns related to private keys distribu-
tion cannot be omitted. Ideally, keys, a system root password, and
other sensitive data should not be held within the system image.
They should be injected during the fi rst VNF boot. Every VNF should
have its own key pair (those running in a high availability cluster can
share one key pair). In this way, the situation where one compro-
mised machine compromises others can be avoided.

Back-doors via testing interfaces
Another issue aff ecting most virtualized environments pertains to
testing and troubleshooting activities that are usually performed
remotely. The common pitfall here is leaving the testing/debug in-
terfaces open after an environment is put in production. They are
often accidentally left open but, surprisingly, sometimes they are
intentionally left open for easier troubleshooting by a support staff .
It is a very risky practice because “security by obscurity” is a com-
monly criticized approach as it provides only a false confi dence that
the system is to some extent secured.

Nokia Shaping the future of telecommunication. Check how the experts do it. 21Nokia Shaping the future of telecommunication. Check how the experts do it.2020

Advanced Telecommunication Technologies

5G for Mission Critical Machine
Type Communications

 Karol Drażyński
Senior Radio Research Engineer
T&I Radio Research

Maciej Januszewski
Senior Radio Research Engineer
T&I Radio Research

1. Trends in mobile communication and the path to 5G
The number of smart phones, tablets, diff erent types of applica-
tions, and video-streaming services that we use is growing. This
results in unparalleled diversity of ways in which we connect and
communicate. The exponential increase in consumer mobile traffi c
stemming from a growing number of those devices and services is
one of the driving forces behind the development of 5G radio tech-
nologies. To accommodate the expected 10 000 times higher traffi c
level in the year 2020 compared to 2010 and also widely available
100 Mbit/s average throughput, both radio access and the core part
of mobile networks need to be redesigned. It is however not the only
reason, since there is a number of new services and requirements
shaping the future of mobile communication. As a matter of fact the
vast variety of service requirements is why new system architecture
is needed with programmable, software-driven core networks to
effi ciently address service demand diversity. The new system also
needs to be fl exible in order to provide a future-proof platform. This
means support for newly-identifi ed services and use cases, as well
as for services that have not yet emerged but will very likely appear
in 10 years from now. New areas where mobile networks are expect-
ed to vastly improve with the creation of 5G are: throughput, laten-
cy, battery lifetime, as well as energy and cost effi ciency. Improving
those Key Performance Indicators paves the way towards Internet
of Things (IoT) with new services and applications enabling billions
of devices to stay connected and interact with each other. IoT (see
Figure 1) already today and even more in the future will create a big

impact in nearly all aspects of human lives, for example: medical and
health care, wearable devices, monitoring services, smart cities, and
many types of consumer appliances and sensors.

Among other benefi ciaries one can list, industry automation, smart
grids, logistics, big data analytics, and last but not least, the auto-
motive industry. To enable those services, reliable, eff ective, and
cost effi cient radio communication solution is required, which 5G
is targeting to provide. Hence, the Machine Type Communication
(MTC) is one of the pillars of the new 5G system.

2. Machine Type Communication overview
Machine Type Communication (MTC) is a type of communication ena-
bling machines to exchange information with the cellular mobile net-
work or with other devices via the cellular networks. It is expected to
become an important part of 5G system enabling the full utilization
and exploration of IoT services. With predictions that up to 25 bil-
lion devices (according to Cisco’s VNI Forecast [1]) will be connected
to the Internet by the year 2020, mobile networks must ensure that
they will be able to satisfy this connectivity demand. Since there will
be much more devices than humans connected to the network, MTC
type of connections will have a major role in mobile networks’ traffi c
load. This means a shift from traditional mobile networks assump-
tions in which the human end user is the main benefi ciary of voice and
data services towards a system designed to also benefi t machines
and their automated exchange of information. Since machines can

Figure 1 Applications of wireless connectivity in 5G-IoT era.

Augmented
shopping

Smart
clothes

Virtual 3D
presence

Factory
automation Real-time

remote control

Real-time
remote control

Assisted driving

Logistics

Traffic steering &
management

Smart grids

Connected
home

Real time
 cloud access

4k Video

VR gaming

Remote
Diagnosis

Communication

Mobile living

3D printing

Automotive

Toll collection

 HD Cams NW

REVOLUTIONIZED

Traffic Mgmt.

SUPEREFFICIENT

Waste mgmt.

Reliable emergency
communications

Tracking / inventory
systems

AUGMENTED

Augmented
dashboard

INTERCONNECTED

8k Video
beamer

TACTILE VIRTUAL

Smart
watch

Augmented
gaming

Self driving

Maintenance
optimization

Touch & steer

AUTONOMOUS

Travel &
commute

Health

Time shift

Utility & Energy Safety & Security

Work & game
while traveling

REDEDICATED

People & Things

Real time
 work in cloud

Industry 4.0

Advanced monitoring

Personal
robot

m
ob

ilit
y revolution

High perfo
rm

an
ce

Virtual

Re
al

world
4th industrial

infra
stru

ct
ur

e

m
obility

Nokia Shaping the future of telecommunication. Check how the experts do it. 23Nokia Shaping the future of telecommunication. Check how the experts do it.22

• Industry automation
With interconnected ultra-reliable communication robots and
other manufacturing devices, a fully remote plant automation
scheme can be provided.

• Smart city
Ultra-low-power-consumption sensors (wearable or standalone)
scattered around the city can enable the exchange of data and
provide access to short-range IoT.

The diff erences between applications and the resulting connection
requirements stem from the fact that each of them can have a dif-
ferent set of requirements regarding latency, reliability, availability,
and throughput. Other parameters, which need to be considered to
diff erentiate connection types, could be for example traffi c type,
authentication, or subscription and pricing diff erentiation.

A common division of MTC is with regard to the number of devices
and to the required reliability and latency.

Figure 2 depicts the triangle of services envisioned for 5G. Clearly,
the main characteristic of 5G system is that it will have to be much
more scalable compared to today’s cellular systems. The applica-
tions range from those designed for Gigabyte throughputs to the
ones requiring ultra-low latency. Even inside the MTC domain the
requirements are extremely diverse. The bottom-left corner of the
requirements triangle shown in Figure 2 is often referred to as
Massive MTC or the IoT. Here the main challenge is supporting com-
munication of all sorts of network-access-capable devices. These

process information much faster than humans, the communication
latency level should match the machines processing times. Hence, the
expected communication latency has to drop signifi cantly. Also, cellu-
lar direct device-to-device communication shall be possible for peer-
to-peer data exchange. Examples of such IoT services are self-driv-
ing cars, smart homes, or industry automation with inter-connected
machines. Certainly, this requires many changes in basic network as-
sumptions in terms of device addressing, security procedures, and
service diff erentiation. Due to the plethora of IoT devices and their
applications the resulting traffi c has a broad scope of extreme re-
quirements, often requiring advanced QoS management in the radio
network. After all, a 5G network will have to accommodate all types
of Mobile Broadband traffi c and not only MTC traffi c. All these possi-
bilities will be ultimately enabled with one 5G radio access and hence
there will be a strong need to manage the resulting traffi c types effi -
ciently and according to their relevant requirements.

3. Applications of MTC
The aforementioned diversity of applications and service types will
also result in diff erent types of connections required for those de-
vices. For instance, we can envision the following applications for 5G
MTC [6]:

• Autonomous driving
Cars will be able to drive autonomously, in real-time obtaining
information on road and traffi c conditions, and exchanging
information with other road users and network infrastructure
to improve road safety.

4. Mission Critical vehicle-to-vehicle communication
Anually, 40 000 people die and 1.7 million are injured in result of
traffi c accidents in Europe alone [2]. Apart from the casualties, in-
creasing traffi c leads to jams, pollution, higher fuel consumption,
and increased transition time. The heavily-researched Cooperative
Intelligent Traffi c System (C-ITS) [3] can address these problem by
actively warning drivers about road hazards or automatically in-
tervening in dangerous situations. C-ITS could also optimize traffi c
load and thus reduce traffi c jams and fuel consumption. Apart from
direct vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, cooperation with vulnerable road users (VRU), e.g.
pedestrians, cyclists, should be possible. It is expected that the per-
sonal devices (e.g. smartphones) that are carried by the vulnerable
users could also play an active part in the C-ITS.

Naturally, autonomously driving cars will also rely to great extent
on onboard sensors. The V2V and V2I communication will only play
a supplementary role as long as this communication is not ultra-re-
liable. However, even in the initial stages of autonomous driving, the
vehicle-to-vehicle communication can be extremely useful due to
number of reasons:

• Sensors embedded in cars cannot “see” over corners and other cars.
• Sensors’ operation can be compromised in poor weather conditions.
• Sensors introduce a considerable reaction delay: currently

100–200 ms.
• Receiving the same information over multiple channels (sensors

and radio) increases reliability.

devices are expected to be deployed with a density reaching up to
3 million devices per square kilometer, hence their cost and energy
consumption create another challenge so be addressed. Potentially,
those devices will not require very high data throughputs, their ac-
cess to the network is expected to be rather periodic or intermittent
with small amounts of data per transfer. The omnipresent wireless
sensors and radio tags will not require very high throughputs but
should be cheap and very energy-effi cient, so that they can operate
for at least 10 years on a single battery or even using energy har-
vesting techniques. The bottom-right corner of this triangle refers
to so called Mission Critical Communication. These are the services
that require either ultrahigh reliability, very low latency or, in the
most challenging case, the combination of both.

Figure 3 presents the Mission Critical use cases sorted according to
their latency and reliability requirements. As illustrated, the Industry
Automation and Remote robotics use cases put the most stringent re-
quirements on the system. High-precision robots need to communi-
cate with ultra-high reliability and latency below 1 millisecond [5]. The
eHealth application area is expected to have moderate end-to-end
delay needs but has to remain very reliable. Similarly to Smart Grid use
cases where the information will have to be transmitted quickly over
very long distances for example to prevent energy network failures.
Automotive use case remains one of the most interesting in this group.
Apart from critical latency and reliability requirements, which cannot
be met with the existing wireless technologies, vehicle-to-vehicle com-
munications will also include considerable device and traffi c density, as
well as very high mobility, hence challenging radio conditions.

Figure 2 Diversity of services, use cases, and requirements for 5G. Figure 3 Mission Critical Communication use cases.

eHealth
(body sensors)
• Specialty: Long battery

lifetime required

Automotive

• E2E latency < 0.5–10 ms 1)

• Reliability up to BLER 10-6

• Specialty: Mobility
• Positioning accuracy 0.5 m

Industry Automation

• E2E latency partially < 0.5 ms
• Reliability up to BLER 10-9 2)

• Specialty: Often isolated areas

Remote robotics /
surgery

• E2E latency < 1 ms due to need
forhaptic feedback

• Reliability up to BLER 10-9
Smart grid

• Moderate to high latency
and reliability requirements

• Specialty: Large distances
to be covered

Augmented Reality

• E2E latency < 5 ms to avoid
cyber sickness

• Reliability requirements less tough
(but need to detect failures reliably)

• Specialty: High data rates
1) METISD1.1
2) A. Frotzscher et al., Requirements and

current solutions of wireless communication
in industrial automation, ICC 2014

Latency requirements

Re
lia

bi
lit

y
re

qu
ire

m
en

ts
m

od
er

at
e

moderate

ve
ry

 t
ou

gh

very tough

<1 ms
radio latency

Critical machine
type communication

Massive machine
type communication

A trillion of devices with diff erent needs GB transferred in an instant Mission-critical wireless control and automation

Outdoor

Work in
the cloud

Smart city
cameras

3D video /
4K screens

Capacity for
everyone

VR gaming
Industry 4.0

Remote control
of robot

Autonomous driving
Mission critical

broadcastSensor NW

Flexibility
for the

unknown

Th
ro

ug
hp

ut

Latency | Reliability# of Devices | Cost | Power

Ultra-denseCrowd(Low power) Wide area

Massive Broadband

10 000
x more traffi c

100 Mbps
whenever needed

>10 Gbps
peak data rates

10–100
x more devices

M2M
ultra low cost

10 years
on battery

Ultra
reliability

Nokia Shaping the future of telecommunication. Check how the experts do it. 25Nokia Shaping the future of telecommunication. Check how the experts do it.24

ultra-low latency the time margin for performing this type of
diversity may be limited.

• Frequency diversity
The data is sent using multiple frequency channels or spread
over a wide spectrum to combat frequency-selective fading.

• Space diversity
Using multiple transmitting/receiving antennas to transmit the
signal over multiple paths.

Even though the diversity techniques are well known in wireless
technology, the Mission Critical Communication require support for
even more diversity, and therefore induce the formation of novel
radio solutions and network deployments. It is considered that mes-
sages will not only have to be transmitted over multiple antennas
but also over multiple completely independent and redundant com-
munication links.

Figure 5 shows how diversity, and thus reliability, can be exploited
in a road traffi c scenario improving safety while using multiple links
to convey the same message. One of the fundamental techniques
used here is direct device-to-device (D2D) communication which
means that devices in close proximity can transmit to each other
directly and offl oad the Base Stations (BS). However, in case of V2V
communications the BS or dedicated Road Side Unit (RSU) can be
used in parallel to improve the reliability.

There are also numerous enhancements that are considered to be
deployed in 5G to help in dealing with Mission Critical Communica-
tions. One example of those is a new design of the Physical Layer.
Shorter transmission time interval will reduce the end-to-end delay

Improvements in both wireless communication and sensors tech-
nology are needed to build a truly 100% reliable C-ITS system. Most
likely the autonomous driving will be deployed in phases as depicted
in Figure 4 . However, the early forms of autonomous driving can
already be served with 4G LTE-A technology in combination with the
IEEE 802.11p standard.

In most phases, C-ITS system will depend on timely and reliable ex-
change of information via radio communications. Data can be sent
either periodically (10–100 Hz) or on the event-triggered basis. The
data packet size will be moderate for most use cases, as the mes-
sages will contain the information about vehicle id, speed, direction,
position, and so on [4]. Nevertheless, there are also some applica-
tions that will come along with higher throughput demand. One ex-
ample of such an application is the see-through technology, which
projects a video from the front of the car on its back allowing drivers
behind to “see through” that car.

5. 5G solutions that can address Mission Critical Communication
needs
Signal diversity is the key to ultra-reliable communication. In a very
dynamic multipath vehicular communication channel, the radio con-
ditions can change very rapidly. Diff erent forms of diversity can be
combined to overcome a fade in channel quality and ensure suc-
cessful transmission of the message:

• Time diversity

Some data is transmitted many times or a redundant error
correcting code is added to combat instantaneous error bursts
in a channel. In case of Mission Critical communication requiring

support for MTC will be embedded from the beginning into 5G it
will enable the deployment and utilization of Internet of Things
(IoT). Billions of devices will be able to communicate and exchange
information with other machines to help people fulfi ll their every-
day tasks. One of the major breakthroughs with this technology
will be the introduction of “intelligent” vehicles, being able to
communicate with each other and the rest of the road users. Over
the years the vehicles will gradually transform into fully auton-
omous, self-driven cars. To enable this type of applications, 5G
needs to support MTC with ultra-reliable and latency-critical radio
links. This challenge has so far never been achieved and only a new
system, designed from the scratch to fulfi ll this task can enable
such solutions.

It remains to be yet discovered which new applications and services
will emerge with the introduction of 5G and Mission-critical MTC. For
sure it will transform our daily interactions with machines and cars
to guarantee safer and more comfortable journeys.

References
[1] Cisco VNI Forecast Highlights, http://www.cisco.com/web/solu-

tions/sp/vni/vni_forecast_highlights/index.html
[2] http://ec.europa.eu/transport/road_safety/specialist/statis-

tics/index_en.htm
[3] ETSI Cooperative ITS, http://www.etsi.org/index.php/technol-

ogies-clusters/technologies/intelligent-transport/coopera-
tive-its

[4] ETSI TS 102 731 v1.1.1, ITS Security Services and Architecture.
[5] Nokia 5G White Paper, http://networks.nokia.com/fi le/28771/5g-

white-paper
[6] Nokia 5G Requirements White Paper, http://info.networks.nokia.

com/5G_Requirements_wp.html

in the network. New frequency bands expected to be available for
5G will open much more spectrum which will considerably improve
the transmission quality. Advances in receiver technology will refl ect
in better interference cancellation, while access design and coding
technique enhancements will optimize the transmission for small
data packets and ensure faster decoding.

6. Vision for MTC in 2020 and beyond
The development of 5G technology will provide, an effi cient way
to exchange information between machines. Major diff erences
compared to human type communication are related to speed of
information exchange, latency, as well as throughputs. Machines
can simply process information faster than humans and so their
communication means have to match that. Due to the fact that

Figure 4 Phases of autonomous driving. Figure 5 Vehicles-to-vehicle communication over multiple links.

About the authors

I have graduated from Poznań University of
Technology in Electronics and Telecommunications.
I am currently working in Technology and Innovation
(T&I) department, where I am developing concepts
for the 5G system with focus on Machine Type
Communication with Mission Critical deployments

Karol Drażyński
Senior Radio Research Engineer
T&I Radio Research

I work in Wrocław Technology and Innovation (T&I)
department of Nokia Networks. I lead the research on
Mission-critical Machine-type Communication for 5G.
I’m also leading the Innovation Board where all employees
from Nokia Wrocław can submit their innovative ideas
that improve our products and workplace.

Maciej Januszewski
Senior Radio Research Engineer
T&I Radio Research

Communications-
assisted driving

(car drivers
receiving

information about
hazards ahead)

Doable with LTE-A

Less reliability
need, but essential
to reliably identify

errors and
tamper-resistance

Driving relies to
a larger extent on

wireless
communications

Autonomous
driving

(sensors used to
avoid collisions
or drive in “road

trains”)

Communications-
enhanced

autonomous
driving

(sensors and
wireless

communications
used to react to

hazards)

Centralized
driving

(car control largely
taken over by

some central entity,
based on car sensor

information and
wireless

communications)

Advances in
automotive

sensors

Advances in
automotive

sensors

Today Future

Nokia Shaping the future of telecommunication. Check how the experts do it. 27Nokia Shaping the future of telecommunication. Check how the experts do it.2626

Advanced Telecommunication Technologies

Big-data-driven Telco Market

John Torregoza
Specialist, Network Engineering
MBB Customer Support

 Sławomir Andrzejewski
Specialist, Network Engineering
MBB Customer Support

Krzysztof Waściński
Radio Concept Owner
MBB Customer Support

Ireneusz Jabłoński
Specialist for Data Mining
and Machine Learning
MBB Customer Support

1. Looking through a new microscope of Big Data
Mankind has come a long way from the Stone Age era to the world
we are living in today – the Big Data (BD) era. This new mind-blow-
ing universe is expanding incredibly fast – 90% of data that ever
existed have been created in last two years [1, 2]. The amount of
data available now is huge, but even more fascinating is the fact
that there is a plenty of undiscovered connections in this space.
Therefore questions raise: How to handle that data? How to get
meaningful results? As a starting point on the path to wisdom, data
is the result of an observation (measurement) and it is generated
in the interaction between people, machines, applications, and the
combinations of these. There is no other way clarify what is going
on in the modern world. A bridge between data and wisdom need to
be found (Figure 1). Here, data is the most basic level, information
adds context, knowledge adds to how to use it, and wisdom adds to
when and why to use it.

But in fact, there is a huge amount of people, machines, applica-
tions, and other elements in the world, which imply many possible
diff erences in combinations spanned between them. Moreover, the
ecosystem is complex and it keeps evolving.

Now, let’s have a closer look on the four Vs: Volume, Variety, Velocity
and Veracity (see Figure 2).

Volume refers to the magnitude of data (see Figure 3). Defi nitions
of big data volumes are relative and vary by factors, such as time
and data type. Some think that what is considered a big data to-
day may not meet the threshold for big data in the future, because
storage capacities will increase, allowing even bigger data sets to be
captured.

Variety refers to the structural heterogeneity in a dataset. Tech-
nological advances allow companies to use various types of struc-
tured, semi-structured, and unstructured data. Structured data,
which constitutes only ~5% of all existing data [4], refers to the
tabular data found in spreadsheets or relational databases. Text,
images, audio, and video are examples of unstructured data, which
sometimes lack the structural organization required by machines
for analysis.

Figure 1 ‘ Big Data’ concept and D-I-K-W hierarchy in cognition
process.

Figure 2 Four Vs features identifi ed for Big Data [3].

pa
st

fu
tu

re

Consolidation

Analytics

Understanding
Wisdom

Knowledge

Information

Data

i

Massive amount
of data

(terabytes,
petabytes)

Different types of
structured and
unstructured data

Uncertainty of
data
truthfulness
and accuracy

Real-time
analysis of

streaming data

VELOCITY VERACITY
VOLUME VARIETY

Billion pieces
of content

Missing
data

Low quality
dataReal time data

analysis

01001001001

Unknown
data

?

??
!

Quintillions

of bytes

per day

Nokia Shaping the future of telecommunication. Check how the experts do it. 29Nokia Shaping the future of telecommunication. Check how the experts do it.28

ness, which cannot do well without the (tele)communication layer.
Despite the power of the term of ‘Big Data’, we need to be conscious
that data fall into the past, but the future for the telco market is the
art of closing the gaps in the D-I-K-W scheme with regards to deal-
ing with (big) data (Figure 1). Put simply, currently a frontier of big
data expresses itself through extreme information management.

Speaking in both local and general sense, the open question is: How
can we manage big datasets in order to fi nd singular information,
knowledge, and wisdom, which is the precondition for increasing the
satisfaction of customers, and fi nally growth of the telco business?
Big Data techniques and Knowledge Discovery approach might help
in crucial fi elds for business in the following ways:

• Deliver smarter services that generate new sources of revenue.
• Transform operations to achieve business and services

excellence.
• Build smarter networks to drive consistent, high-quality

customer experience.

Remarkable progress has been achieved, but still there are many
challenges which should be addressed:

Velocity refers to the rate at which data are generated and speed
at which it should be analyzed and acted upon. The proliferation of
digital devices such as smartphones and sensors has led to an un-
precedented rate of data creation and is driving a growing need for
real-time analytics and evidence-based planning.

Veracity refl ects the level of uncertainty of the data. In the imperfect
world we live in, the data is imperfect too. Usually there are a lot of in-
consistencies or missing parts. As a result we might consider and pro-
cess collected data only with some level of probability (see Figure 2).

Bear in mind that your particular problem does not necessarily have
to combine all the big Vs to be labeled as a Big Data problem. You
might be challenged to deal with a relatively small amount of data in
terms of volume, but at the same time with a great complexity. Big
Data is more about getting wisdom from data than anything else.
Finally, contemporary Big Data studies show that the external data
carry much more information about the system than the internal.

And indeed it is the knowledge and wisdom which determine the fi -
nal objective for a success story in business. Nokia is looking for the
general laws conditioning a continuous progression in modern busi-

fi les were the starting point in data storage for big data rookies.
Simplicity of RDBMS model rules has enabled founding the SQL
language (Structured Query Language), effi cient for algorithmisa-
tion of creation, maintaining, and querying of this databases. It
should be noted, that still 7 of 10 most popular DB engines use
relational rules [5]. Good examples are Oracle or MySQL. But in-
homogeneous and dynamic nature of Big Data domain makes data
storage a complex task limiting operational workfl ow in the rela-
tional scheme. The cure for this throttle has shown to be a non-re-
lational model of data management (or NoSQL, often interpreted
as ‘Not only SQL’) – see Figure 4 .

But in contrast to RDBMS, scalable for much of the data pro-
cessing and business intelligence cases, there is no generalized
non-relational scheme used for data storage in BD technology.
Now, here, one can easily fi gure out the demands for BD applica-
tions operating with low-latency (real-time or nearly real-time)
on huge and inhomogeneous datasets in police systems, naviga-
tion systems, telemedical infrastructures, telecommunications
networks, etc. Below are ten properties such a system should
have [6]:

• scalability
• tiered storage
• self-management
• content availability and accessibility
• analytical and content applications support
• workfl ow automation support
• legacy applications integration
• enable integration with public, private, and hybrid cloud

ecosystems
• self-healing

• Identifying the ‘big’ questions signifi cant for progression of telco
market.

• Finding concise responses for the ‘big’ questions using analytic
approach,

• Queuing and synchronization of new products, which infl uences
the strategy of the company and profi les the market state/
evolution.

• Designing and releasing of new features for Nokia’s products.
• Merging the technical and business inputs for establishing

balanced growth of the business.

2. Tools landscape for big data
Big data technology includes three main services:

• Data storage
• Data analytics
• Data visualization

In practice, they usually are individual layers (with own methodolo-
gies, languages and software tools), which need a signifi cant eff ort
and time to expertise.

The key issues for each of these services are volume and inherent
character (structured, hybrid, unstructured) of data used for in-
ference on complex systems characteristics in Big Data technol-
ogy. Data features (see Figure 2) have triggered BD migration
from relational (RDBMS – relational database management sys-
tem) to non-relational model of management in database system
(see Figure 4).

Each relational database (DB) is a collection of tables (called rela-
tions) consisting of set and relational algebra. For sure excel or .csv

Figure 3 Storage terms. Figure 4 Estimated growth in structured vs. unstructured data and relational vs. non-relational model of management in database system.

73,604

61,452

44,494

28,183

16,833

Asia Pacific mobile network data traffic by traffic type (in
Petabytes)

9,325

2013

Video/Internet

Source: ABI Research

Prefix
kilo

mega
giga
tera
peta
exa

zetta
yotta

k
M
G
T
P
E
X
Y

103

106

109

1012

1015

1018

1021

1024

Symbol 10n

Video streaming/TV Audio streaming P2P VoIP

1 Petabyte
1,000 Terabytes or

250,000 DVDs

480 Terabytes
A digital library of all of the world’s catalogued
books in all languages

100 Petabytes
The amount of data produced in a single
minute by the new particle collider at CERN

5 Exabytes
A text transcript of all words ever spoken †

100 Exabytes
A video recording of all the meetings that
took place last year across the world

400 Exabytes
The amount of data that will cross the Internet
in 2012 alone

1 Zettabyte
The amount of data that has traversed
the Internet since its creation

300 Zettabytes
The amount of visual information conveyed
from the eyes to the brain of the entire human
race in a single year ‡

20 Yottabytes
A holographic snapshot of the earth’s surface

1 Exabyte
1,000 Petabytes or

250 million DVDs

1 Zettabyte
1,000 Exabytes or

250 billion DVDs

1 Yottabyte
1,000 Zettabytes or

250 trillion DVDs

2014 2015 2016 2017 2018

45

40

35

30

25

20

15

10

5

0
2010 2011 2012 2013 2014 2015 2016 2017

COMMENT 1TITLE1TITLE1

COMMENT 101 1

COMMENT 202 1
TITLE 2 IMAGE

POSTS
POSTS

COMMENTS

Titleid

1

COMMENT 2

COMMENT 3

2018 2019

Years

Structured
Unstructured

NON-RELATIONALRELATIONAL
Z
e
t
t
a

b
y
t
e
s

Nokia Shaping the future of telecommunication. Check how the experts do it. 31Nokia Shaping the future of telecommunication. Check how the experts do it.30

The core of the work of the Nokia Big Data team is focused on de-
signing and implementing BD methods and tools in order to obtain
information, knowledge, and wisdom on:

• the temporal and future status of the telco market,
• the optimized leading of Nokia’s business and the role of the

company in profi ling the world telco market.

This is a formalized fi eld of knowledge and skills associated with cre-
ative actions, thus the team members are often called data scien-
tists. The data scientist community tends to use a variety of tools,
typically across diff erent programming languages. Workfl ow that
involves many diff erent tools requires a lot of context-switching
(Figure 6).

In fact, each of these characteristics may be more or less relevant,
but taken together they provide a vision of how Big Data could be
managed in the long term and in an aff ordable way. Exemplary and
popular NoSQL solutions are MongoDB and Cassandra. But, once
again referring to the D-I-W-K schema, just having the data is not
enough, and processing extensive data might be challenging. The
good news is that there are tools and platforms on the market,
which are ready to help you with this task. One of the possible paths
to be chosen is to use the power of the MapReduce algorithm, which
allows the user to benefi t from distributed, parallel data process-
ing. The good starting point for understanding how the algorithm
works is getting familiar with functions like “mp” and “reduce,” wide-
ly known from functional programming. Probably the most popular
and well known framework related to MapReduce is an open-source
project called hadoop (Figure 5).

(Figure 8), and develope competence under our supervision. By
becoming a data scientist in Nokia, you earn not only a competi-
tive professional profi le, but most of all you join the future of the
telco market and beyond. Practicing with various software envi-
ronments for BD analytics and visualization, you can uncover their
usefulness in BD tasks which will defi ne your growing expertise –
see the examples in Table 1 .

Although the workfl ow of a data scientist seems to be complex [7]
and requires interdisciplinary training (Figure 7), the same work
guarantees job satisfaction with highly useful results for top man-
agers developing business strategies. However do not be intimi-
dated by this complex path dominated by a plethora of methods
and programming tools. One can start as a trainee, e.g. with sim-
ple examples of statistical analysis or machine learning algorithms

Figure 5 Exemplary pipeline of big data stream.

Figure 6 Diagram of work for data scientist.

Figure 7 The general profi le of a data scientist – a multidisciplinary specialist working at the forefront of modern business.

many possible
data sources

?

optional
further
post

processing

visualization
dashboarding

Acquire Ingest/
Clean

Storage/
Manage

Featurize Visual
Analysis

Modeling Storytelling

Build Model
Present

Disseminate

Monitor
Maintain

Model

Deploy
Model

Interactive
Queries

Wrangle

MATH & STATISTICS

• Machine learning

• Statistical modeling

• Experiment design

• Bayesian inference

• Supervised learning: decision
 trees, random forests, logistic
 regression

• Unsupervised learning:
 clustering, dimensionality
 reduction

• Productive analytics

DOMAIN KNOWLEDGE
& SOFT SKILLS

• Passionate about business

• Curious about data

• Influence without authority

• Hacker mindset

• Problem solver

• Strategic, proactive, creative,
 innovative and collaborative

PROGRAMMING
& DATABASE

• Computer science fundamentals

• Scripting language e.g. Python

• Statistical computing package e.g. R

• Database SQL and NoSQL

• Tools for analytics, e.g. RapidMiner

• Relational algebra

• Parallel databases and parallel query
 processing

• MapReduce concepts

• Hadoop and Hive/Pig

• Custom reducers

• Experience with xaaS like AWS

COMMUNICATION
& VISUALISATION

• Able to engage with senior management

• Storytelling skills

• Translate data-driven insights into
 decision and actions

• Visual art design

• R packages like ggplot or lattice

• Knowledge of any of visualisation tools
 e.g. Flare, D3.js, Tableau

Nokia Shaping the future of telecommunication. Check how the experts do it. 33Nokia Shaping the future of telecommunication. Check how the experts do it.32

3.1. Correlation studies
• Scope of a use-case:

One of the main pillars of a well performing network is optimiza-
tion. Even the best-in-class telecommunications gear needs tun-
ing and proper parameterization adjusted to environment char-
acteristics. That task requires system expertise. All these features
defi ne the fi nal network performance Key Performance Indicators
(KPIs). The legacy methods used to bring KPIs to their maximum
level utilize manual tests and KPI analysis on a rather small scale –
within single clusters or even sites. Big Data brings that exercise
to the next level by a massive data analysis opportunity. On top
of that,new, previously unknown dependencies and correlations
can be found. Correlation matrix and decision tree methods
are used.

• Inputs for analysis:
Network performance KPIs (Key Performance Indicators) and
parameterization (CM – confi guration management data).

• Results of analysis:
The exemplary matrix (symmetrical) is show in Figure 9 , visu-
alizing the dependencies between 5 measures. In this example,
it can be seen that an increase of users correlates positively
with the physical resources usage (PRB) measure. Such matri-
ces may include much more metrics, which speeds up the anal-
ysis process.

3. Big Data use cases
The availability and collection of huge amounts of varied data is driv-
ing the conception of diff erent big data use-cases. These use-cases
are aimed at acquiring valuable insights from the vast amounts of data
in order to propose decisions or actions that would improve the busi-
ness processes within the company. Telecommunications equipment
vendors, like Nokia, are in a good position to take advantage of in-
formation collected from their systems. In particular, this information
can be used to drive sales cases generation and operation effi ciency.

Below is a list of the services expected for release by the telco market:

• service and sales automation
• upsell discovery
• business inteligence information enrichement with e.g. geodata
• customer fi nancial spending forecasting
• network audit automation
• anomaly detection & diagnosis
• accurate capacity planning
• cell-site optimization, through machine learning and correlations etc.
• problems root-cause analysis

In this section, examples of big data use-cases have been shown
to report the signifi cance of big data and analytics in the area of
telecommunications.

Figure 8 Examples of applications of machine learning in Big Data analytics.

Name of software tool Pros Cons

Matlab

• very well documented
• huge number of available functions
• good community and support – widely used by engineers and

scientists
• good IDE (but it is matter of taste)

• not free solution (with toolboxes can be expensive)
• requires understanding “matrix-fi rst” concept; might be

bit strange at the beginning for programmers switching
from other languages

Python

• modules related to data analytics to start with: Pandas (data
structures and data analysis), NumPy (scientifi c computing),
MatPlotLib (plots and charts – matlab-like style!), scikit-learn

• its general purpose language so other activities/tasks can be
solved without jumping out of it (web-frameworks, parsing any
kind of fi les, playing with www/url, creating stand-alone app and
many more…)

• it's free – most of modules are open source, free to use
• huge community, easy to fi nd the answer for your question in web

• it might take some time to choose your favorite modu-
les, set-up your workfl ow etc. But on the other hand it is
fun and because of such fi ne-tuning exactly according
to your needs it might be very eff ective

• documentation is distributed between the modules
• sometimes something is missing and/or in experimental

state

Rapid Miner

• drag-and-drop interface – design for non-programmers
• designed for data science/analytics – build in a wide range of

statistical models
• free for starting package

• quite expensive for versions higher than starter
• more advanced functionalities are accessible in com-

mercial version

R

• very popular amongst scientists and data analysts working in
industry

• Fortran, C/C++, and Python wrappers are in place
• external packages are almost daily increasing, most of them

based on published up-to-date books and peer-review articles

• everything you want to do is a command line, minimal GUI
• memory management problems, especially when you

are working with big datasets

Table 1 The pros and cons of example software tools dedicated to Big Data analytics and visualization.

Figure 9 KPI correlation matrix (please note that the matrix is symmetrical, thus axis labels are in the middle).

REGRESSION ANALYSIS ANOMALY DETECTION CLUSTERING ANALYSIS

x-values

λ = 0

y-
va

lu
es

Nokia Shaping the future of telecommunication. Check how the experts do it. 35Nokia Shaping the future of telecommunication. Check how the experts do it.34

• Results of the analysis:
Using the nearest neighbor distance attributes, each eNodeB is
classifi ed into diff erent clutter types. For this procedure, a self-or-
ganizing map (SOM) algorithm from Rapidminer is used. The SOM
algorithm is a neural network based algorithm which maps similar
data samples together and diff ering samples farther from each
other. The eff ect is the formation of clusters which follow the dis-
tribution of the samples.

Figure 11 shows a summary of the result of an analysis between
two operators. SOM analysis resulted in four clutter types with
the average cell range for each clutter type per operator illustrat-
ed in Figure 11 . It can be seen that Operator B has a signifi cantly
dense deployment compared to Operator A.

Figure 12 shows another view of the diff erence between deploy-
ments of Operator A and B. This plot shows the cumulative distribu-
tion function (CDF) of the operators’s deployment. From the fi gure
it can be seen that 50% of Operator A’s eNodeBs have a cell range
below 1.287 kilometers. In contrast, 50% of Operator B’s eNodeBs
have a cell range below 1.816 kilometers.

4. Sumary
Big data is an amalgamation of many trends: extreme data growth,
a greater importance of external data over internal data, and the shift
in computing business models. Big data is about redefi ning what data

The inclusion of further, less dynamic, measures, like parameters,
encourages the use of decision tree analysis (Figure 10). The exam-
ple shown below the classifi cation model which splits the cells into
three diff erent traffi c classes (A, B, C) accordingly to their load and
features. This representation of data modeling has an advantage
over other approaches by being meaningful and easy to interpret.

3.2. Network density analysis
• Scope of a use-case:

One way to diff erentiate and characterize customer networks
is through the analysis of how densely customers deploy their
networks. Depending on the density of the customer’s network,
there are diff erent network behaviors and recommendations.
For instance, for less dense networks, network densifi cation
can be given depending on the state of congestion or coverage
of the sparse network. On the other hand, for dense networks
interference mitigation solutions can be a more helpful recom-
mendation.

• Inputs for analysis:
In this big data use-case, the geographical coordinates of the
eNodeBs are used. These geographical coordinates are either
taken from site confi guration information or from interpolated
coordinates collected and calculated by the HERE application.
Based on these coordinates, the distance to the nearest neighbor
is determined via Matlab scripting. This distance is then used to
characterize the eNodeB.

Figure 10 Decision tree. Figure 11 Average cell range.

Figure 12 Cumulative Distribution Function as a function of cell range.

UL SINRCQI

Number of attempts

Power controlLink AdaptationBaseband capacity Number of connected users

BCBA

Number of VoLTE usersInactivity timer CBBCAA

> 5230

> 15> 8

≤ 5230

≤ 15

High> 320 Low Algorithm x AggresiveAlgorithm y Conservative≤ 320

> 20 > 54≤ 20 ≤ 54

≤ 8

4500

4000

3500

2000

2500

1000

500

0

3000

1500

Clutter 4

Av
er

ag
e

Ce
ll

Ra
ng

e
[m

]
CD

F

 Operator A

 Operator B

Clutter 3Clutter 2Clutter 1

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5000 10000 15000 20000 25000 30000 35000

Cell range [m]

 Operator A

 Operator B

Nokia Shaping the future of telecommunication. Check how the experts do it. 37Nokia Shaping the future of telecommunication. Check how the experts do it.36

Post-graduate studies from Inje University, South
Korea with undergraduate degree from the University
of the Philippines in Electronics and Communications
Engineering. Currently focused in area of Big Data
Analytics, LTE load balancing and SON features support.

John Paul Torregoza
Specialist, Network Engineering
MBB Customer Support

Graduate of Wrocław University of Technology in
faculty of Electronics, information and communications
technology. Experienced LTE engineer with deep radio
features insight and system performance analysis.
Recently, supporting the Big Data & Analytics streams.

Krzysztof Waściński
Radio Concept Owner
MBB Customer Support

About the authors

Graduate of Wrocław University of Technology in
Faculty of Electronics, Teleinformatics. Experienced
with software integration and verifi cation, mostly
in test automation area. Currently focused on LTE
network features and data analytics aspects.

Sławomir Andrzejewski
Specialist, Network Engineering
MBB Customer Support

Post-graduate studies from Wrocław University of
Technology in Electronics. Interested in research &
engineering work on physical-mathematical modeling
and experimental techniques. Currently focused in area
of Big Data Analytics for telco business optimization.

Ireneusz Jabłoński
Specialist for Data Mining and Machine Learning
MBB Customer Support

We are now at an early stage of the BD era, and every Reader – di-
rectly or indirectly – participates in its fl ow. All of us are the source
of data and only a select few have a chance to analyze them in their
daily work, to shape the business of the future, and to create a bet-
ter reality for our world.

References
[1] http://www.sciencedaily.com/releases/2013/05/130522085217.htm
[2] http://www.bbc.com/news/business-26383058
[3] https://sharenet-ims.inside.nokiasiemensnetworks.com/

livelink/livelink/overview/D529590938.
[4] Cukier K., The Economist, Data, date everywhere: a special

report on managing information, 2010, February, Retrieved
from: http://www.economist.com/node/15557443

[5] http://db-engines.com/en/ranking
[6] http://www.forbes.com/sites/danwoods/2012/07/23/

ten-properties-of-the-perfect-big-data-storage-architecture/
[7] http://nirvacana.com/thoughts/becoming-a-data-scientist/

actually means to you. It is not only about the technology, but about
a completely new way of doing business where data fi nally gets into
the driver’s seat. The holistic approach of Big Data enables you to
uncover facts on entangled properties of system elements and the
relations between them. By using the big data methods and tools, it is
possible to infer the temporal characteristics of the telco market em-
bedded into our reality composed of many contexts. Simply speaking,
in response to the question of how the dynamics of the telco market
trigger other businesses and how these other domains drive the telco
market is a mission for the Big Data team in Nokia.

In this paper, the foundations of Big Data were presented, including
methods and tools used in this fi eld of knowledge, and supplement-
ed with exemplary applications to telecommunications. This work
positions the big data team in Nokia’s strategy, which drives the
temporal and future status of the telco market as a whole. By plan-
ning your professional path at the crossroads of BD and telecom-
munications, you can familiarize yourself with the steps necessary
in becoming a specialist in Big Data, especially with our supervision.

Nokia Shaping the future of telecommunication. Check how the experts do it. 39Nokia Shaping the future of telecommunication. Check how the experts do it.38

 Telecommunication
System
Engineering

Grzegorz Olender
LTE-Advanced – Mobile Broadband Network
Technology of Tomorrow, Available Today

40

Michał Koziar and Zdzisław Nowacki
OBSAI and CPRI – Internal Transport
Interfaces in Base Stations

46

Radosław Idasiak
LTE Global Verifi cation – Testing In
End-to-End Environment

54

Krzysztof Kościuszkiewicz and Karol Sydor
Digital Linearization of RF Transmitters

72

Szymon Góratowski
Determining the Priorities of eNodeB
Software Tests

60

Marek Salata
LTE L1 Call: The Necessary Condition
for LTE Testing

64

2.1 2.2 2.3

2.62.4 2.5

Nokia Shaping the future of telecommunication. Check how the experts do it. 41Nokia Shaping the future of telecommunication. Check how the experts do it.4040

Telecommunication System Engineering

 Grzegorz Olender
R&D Manager
MBB FDD LTE

LTE-Advanced – Mobile Broadband
Network Technology of Tomorrow,
Available Today

1. Introduction
Long Term Evolution (LTE) mobile communication standard has
been developed and specifi ed by the 3GPP consortium in Release 8
(2008), with minor enhancements defi ned in Release 9 (2009). The
LTE standard, even if marketed as 4G, does not fully satisfy require-
ments of International Telecommunication Union (ITU) for the fourth
generation of mobile telecommunications technology. For this rea-
son the 3GPP consortium has enhanced the LTE standard and pub-
lished the LTE-Advanced (LTE-A) standard in Release 10 (2011), with
additional enhancements in Release 11 (2012). The LTE-A is called
a “True 4G” because it actually meets the ITU requirements for In-
ternational Mobile Telecommunications-Advanced (IMT-Advanced)
systems.

2. System requirements
IMT-Advanced (4G) is a term used by ITU for systems that off er new
capabilities of IMT and go beyond IMT-2000 (3G). System require-
ments for IMT-Advanced were published by ITU in 2008. IMT-Ad-
vanced systems shall support low to high mobility applications and
a wide range of data rates in accordance with the user and service
demands in multiple user environments. IMT-Advanced shall also
have capabilities for high quality multimedia applications within
a wide range of services and platforms, providing a signifi cant im-
provement in performance and the quality of service. [1]

Key features of IMT-Advanced [1] are:

• high degree of commonality of functionality worldwide while
retaining the fl exibility to support a wide range of services and
applications in a cost-effi cient manner

• compatibility of services within IMT and with fi xed networks
• capability of interworking with other radio access systems
• high-quality mobile services
• user equipment suitable for worldwide use
• user-friendly applications, services and equipment
• worldwide roaming capability
• enhanced peak data rates to support advanced services and

applications (100 Mbps for high mobility and 1 Gbps for low
mobility were established as targets for research)

Key technical requirements of IMT-Advanced are [2]:

• support of scalable channel bandwidth up to and including 40
MHz (may be supported by single or multiple RF carriers), with
a recommendation to consider extensions even up to 100 MHz

• peak spectral effi ciency of 15 bps/Hz/cell in the downlink and
6.75 bps/Hz/cell in the uplink

• cell spectral effi ciency of 3 bps/Hz/cell in the downlink and 2.25
bps/Hz/cell in the uplink

• control plane latency of less than 100 ms
• user plane latency of less than 10 ms
• handover interruption time of less than 60 ms

Peak spectral effi ciency is defi ned as the highest theoretical data
rate normalized by channel bandwidth under error-free conditions
to a single mobile station when all available radio resources are uti-
lized (that is, excluding radio resources used for physical layer syn-
chronization, reference signals or pilots, guard bands and guard
times). [2]

Table 1 IMT-Advanced requirements for peak spectral effi ciency
and resulting peak data rates. [2]

Direction
Peak spectral

effi ciency
[bps/Hz/cell]

Peak data rate for
40 MHz channel

bandwidth [Mbps]

Peak data rate for
100 MHz channel

bandwidth [Mbps]

Downlink 15 600 1500

Uplink 6.75 270 675

Cell spectral effi ciency is defi ned as the aggregate throughput of
all users (the number of correctly received bits, that is, the number
of bits contained in the Service Data Units (SDUs) delivered to Layer
3 over a certain period of time) divided by the channel bandwidth
divided by the number of cells. [2]

Table 2 IMT-Advanced requirements for cell spectral effi ciency. [2]

Test environment
Cell spectral effi ciency [bps/Hz/cell]

Downlink Uplink

Indoor 3 2.25

Microcellular 2.6 1.80

Base coverage urban 2.2 1.4

High speed 1.1 0.7

Channel bandwidth used for spectral effi ciency calculations is de-
fi ned as the eff ective bandwidth multiplied by the frequency reuse
factor. Eff ective bandwidth is the operating bandwidth with the up-
link/downlink ratio in case of Time Division Duplex (TDD) operation
taken into account. Frequency reuse factor is the rate at which the
same frequency is reused in the cellular network. It is denoted with
1/K where K is the cluster size, that is, the number of collocated cells
associated with diff erent frequencies. Practical K values are 1, 3, 4,
7, 9 and 12. In case of LTE, K is usually equal to 1.

The spectral effi ciency is measured in bps/Hz/cell. The data rate
can be calculated by multiplying the spectral effi ciency by the chan-
nel bandwidth.

Nokia Shaping the future of telecommunication. Check how the experts do it. 43Nokia Shaping the future of telecommunication. Check how the experts do it.42

Table 4 IMT-Advanced test environments. [1]

Test environment Mobility classes supported Maximum speed
[km/h]

Indoor Stationary, Pedestrian 10

Microcellular Stationary, Pedestrian,
Vehicular (up to 30 km/h) 30

Base coverage
urban

Stationary, Pedestrian,
Vehicular 120

High speed Vehicular, High Speed Vehicular 350

LTE-A supports mobility across the cellular network and is optimized
for low mobile speed within the range from 0 to 15 km/h. Higher
mobile speeds between 15 and 120 km/h are also supported with
high performance. Mobility across the cellular network can be main-
tained at speeds from 120 km/h up to 350 km/h (or even up to 500
km/h depending on the frequency band). [3]

Table 5 Fulfi llment of IMT-Advanced requirements in LTE (R8) and
LTE-Advanced (R10) systems. [3], [4]

Requirement IMT-Advanced LTE (R8) LTE-Advanced
(R10)

Bandwidth ≥ 40 MHz ≤ 20 MHz  ≤ 100 MHz 

Peak
spectral
effi ciency

Downlink 15 bps/Hz 16 bps/Hz  30 bps/Hz 

Uplink 6.75 bps/Hz 4 bps/Hz  16 bps/Hz 

Latency

Control
Plane ≤ 100 ms 50 ms  50 ms 

User Plane ≤ 10 ms 5 ms  5 ms 

3. Carrier Aggregation (CA)
Maximum bandwidth of a single radio frequency (RF) carrier in LTE
is 20 MHz. It was suffi cient for the initial deployment of LTE, but it
did not fulfi ll system requirements of IMT-A. In order to overcome
this limitation and support higher data rates, the Carrier Aggrega-
tion (CA) [5] is introduced in the LTE-A. At the same time backward
compatibility to earlier LTE releases is maintained, so that LTE User
Equipment (UE) may access the network using a single RF carrier
only, whereas CA capable UE in LTE-A may use more than one RF
carrier at the same time to achieve higher data rates.

Control plane (C-Plane) latency is typically measured as the transi-
tion time from diff erent connection modes, for example, from idle
to active state. A transition time (excluding downlink paging delay
and wire line network signaling delay) of less than 100 ms shall be
achievable from idle state to an active state in such a way that the
user plane is established. [2]

User plane (U-Plane) latency (also known as transport delay) is
defi ned as the one-way transit time between an SDU packet being
available at the IP layer in the user terminal/base station and the
availability of this packet (Protocol Data Unit – PDU) at IP layer in the
base station/user terminal. User plane packet delay includes delay
introduced by associated protocols and control signaling assuming
the user terminal is in the active state. IMT-A systems shall be able
to achieve a user plane latency of less than 10 ms in unloaded con-
ditions (that is, a single user with a single data stream) for small IP
packets (for example, 0 byte payload + IP header) for both downlink
and uplink. [2]

Handover interruption time is defi ned as the time duration with-
in which a user terminal cannot exchange user plane packets with
any base station. The handover interruption time includes the time
required to execute any radio access network procedure, radio re-
source control signaling protocol, or other message exchanges be-
tween the user equipment and the radio access network. For the
purpose of determining the handover interruption time, interac-
tions with the core network (that is, network entities beyond the
radio access network) are assumed to occur in zero time. It is also
assumed that all the necessary attributes of the target channel (for
example, downlink synchronization is achieved and uplink access
procedures, if applicable, are successfully completed) are known at
initiation of the handover from the serving channel to the target
channel. [2]

Table 3 IMT-Advanced requirements for handover interruption
times. [2]

Handover type Interruption time [ms]

Intra-frequency 27.5

Inter-frequency
within a spectrum band 40

between spectrum bands 60

IMT-Advanced defi nes the following mobility classes [2]:

• Stationary: = 0 km/h
• Pedestrian: > 0 km/h to 10 km/h
• Vehicular: 10 km/h to 120 km/h
• High speed vehicular: 120 km/h to 350 km/h

4. Enhanced Inter-Cell Interference Coordination (eICIC)
LTE employs the Load Indication procedure that can be used to
exchange Inter-Cell Interference Coordination (ICIC) information
between neighboring eNodeBs (eNBs). The purpose of ICIC is to
prevent interference if neighboring cells operate with the same fre-
quency. ICIC works with frequency resolution of Physical Resource
Blocks (PRB) (that is, twelve consecutive sub-carriers each of 15 kHz).
However, in networks where cells may have diff erent sizes, the ICIC
solution is not suffi cient anymore, especially in case of overlapping
cells that operate on the same frequency.

Figure 3 Example topology of heterogeneous cellular network.

For this reason LTE-A introduces Enhanced Inter-Cell Interference
Coordination (eICIC) [6] with a concept of Almost Blank Subframes
(ABS). ABSs are dedicated subframes (1 ms long) scheduled without
any data transmission and thus without corresponding control in-
formation. Their purpose is to prevent interference in case of over-
lapping cells that operate on the same frequency.

For picocells with the so-called Cell Range Extension (CRE), the ABSs
are created within a macro cell. In this case the task of macro cell
is to blank out certain subframes in which the underlying picocell
schedules relevant information for the interfered UE, for example,
signal measurements.

For femtocells with the so-called Closed Subscriber Groups (CSG),
the ABSs are created within a femtocell. In this case the task of fem-
tocell is to blank out certain subframes in which the overlying macro
cell schedules relevant information for the interfered UE, for exam-
ple, signal measurements.

The corresponding Load Indication procedure has been enhanced
in the LTE-A with new eICIC-related parameters and is used for pi-
cocells. However, femtocells usually do not have X2 interface [7], so
the only way to set up ABSs in femtocells is to confi gure them via
O&M interface.

A challenge related to eICIC is a demand for tight time synchroni-
zation between the coordinated overlapping cells as the ABSs are
defi ned at the subframe level.

Figure 1 Carrier Aggregation (CA).

Each aggregated RF carrier is referred to as a Component Carrier
(CC). The CC can have a bandwidth of 1.4, 3, 5, 10, 15, or 20 MHz.
A maximum of fi ve CCs can be aggregated. Therefore, the possible
total aggregated bandwidth is 100 MHz (5 CCs x 20 MHz).

In FDD operation CCs can have diff erent bandwidths and the number
of aggregated CCs can be diff erent for DL and UL. In TDD operation the
number of CCs and the bandwidth of CCs are the same for DL and UL.

Each CC includes Primary and Secondary Synchronization Signal
(PSS and SSS), Physical Broadcast Channel (PBCH) and Reference
Symbols (RS). That creates additional overhead with respect to Car-
rier Aggregation, however it is necessary to ensure backward com-
patibility to earlier LTE releases.

Figure 2 Carrier Aggregation (CA) deployment scenarios.

LTE UE

CC1 CC2 CC3 CC4 CC5

LTE-Advanced UE

f

LTE UE

Frequency band A

Frequency band A

Frequency band A Frequency band B

Frequency band B

Frequency band B

...

...

...

f

f

f

Inter-band contiguous

Inter-band non-contiguous

Inter-band

macro

femto

femto femto

femto

pico

picopico

Nokia Shaping the future of telecommunication. Check how the experts do it. 45Nokia Shaping the future of telecommunication. Check how the experts do it.44

CoMP cooperating set is a set of points which are the subject of
CoMP operation. The most important CoMP operation schemes are:

• Joint Transmission (JP)/Joint Reception (JR): data is available
at more than one point within the CoMP cooperating set
and transmitted (DL) or received (UL) via multiple points
simultaneously, for example, to improve signal quality and/or
data throughput.

• Dynamic Point Selection (DPS): data is available at more than
one point within the CoMP cooperating set, however, data is
transmitted (DL) via one point only, the transmission point may
change from one subframe to another, for example, to select the
best signal quality (for DL only).

• Coordinated Scheduling (CS)/Coordinated Beamforming (CB):
data is available at one point only within the CoMP
cooperating set and transmitted (DL) or received (UL) via
that point only. However, scheduling/beamforming decisions
are made in coordination, within the corresponding CoMP
cooperating set.

A challenge related to CoMP is a demand for highly effi cient internal
transport interface solutions in base stations that guarantee very
high data rate (going beyond 10 Gbps) and low latency (below half
of a millisecond) at the interface between baseband block and radio
block.

5. Coordinated Multi-Point (CoMP)
Coordinated Multi-Point (CoMP) [8] operation is a range of diff er-
ent techniques that enable dynamic coordination of transmission
and/or reception over geographically separated sites in order to en-
hance system performance and service quality. CoMP can be seen
as a generalization of eICIC, with interference being converted into
useful signal, especially at the cell edges where performance and
quality may be degraded.

Joint transmission means that data is transmitted to a mobile sta-
tion jointly from several points. Joint reception means that data is
received from a mobile station jointly at several points. In gener-
al, both joint transmission and reception require low latency in the
communication between network node and diff erent antennas in-
volved. Hence, in practice diff erent sites may be connected together
to form the so-called centralized RAN.

CoMP implies dynamic coordination among multiple, geographical-
ly separated transmission points where a transmission point is de-
fi ned as a set of geographically collocated and correlated transmit
antennas.

Specifi c techniques used for CoMP are diff erent for the uplink and
for the downlink. That results from the fact that eNBs are inter-con-
nected within a network, whereas UEs are individual elements.

Figure 4 Coordinated Multipoint (CoMP) schemes.

References
[1] „Report ITU-R M.2135; Guidelines for evaluation of radio

interface technologies for IMT-Advanced”.
[2] „Report ITU-R M.2134; Requirements related to technical

performance for IMT-Advanced radio interface(s)”.
[3] „3GPP TR 36.912; Feasibility study for Further Advancements

for E-UTRA (LTE-Advanced)”.
[4] „3GPP TR 36.913; Requirements for further advancements

for Evolved Universal Terrestrial Radio Access (E-UTRA)
(LTE-Advanced)”.

[5] „3GPP TR 36.808: Evolved Universal Terrestrial Radio Access
(E-UTRA); Carrier Aggregation; Base Station (BS) radio trans-
mission and reception”.

[6] „3GPP TR 36.331: Evolved Universal Terrestrial Radio Access
(E-UTRA); Radio Resource Control (RRC); Protocol specifi cation”.

[7] „3GPP TR 36.423: Evolved Universal Terrestrial Radio Access
Network (E-UTRAN); X2 Application Protocol (X2AP)”.

[8] „3GPP TR 36.819: Evolved Universal Terrestrial Radio Access
(E-UTRA); Coordinated multi-point operation for LTE physical
layer aspects”.

[9] „3GPP TR 36.839: Evolved Universal Terrestrial Radio Access
(E-UTRA); Mobility enhancements in heterogeneous networks”.

6. Conclusion
Cellular networks are continuously evolving so new network technology
requirements are emerging. One important example of this evolution
is a generation of heterogeneous networks (HetNet) [9], where access
points of diff erent types and network cells of diff erent sizes are utilized
to off er fl exible and complete wireless coverage. HetNet is a network
with a complex interoperation between macro cells, small cells and, in
some cases, WiFi network elements used together to provide suffi cient
coverage with handover capability between network elements.

Another important trend is utilization of small cells created by low
power radio access nodes that operate in licensed and unlicensed
spectrum with a range of:

• up to 10 meters (femtocell)
• up to 200 meters (picocell)
• up to 2 kilometers (microcell)

A typical macro cell may have a range of tens of kilometers.

Technology evolution related to heterogeneous networks or small
cells is an important trend in the fi eld of future mobile broadband.
LTE-A with features like CA, eICIC and CoMP is one of the key system
solutions that make it happen. LTE-A is designed for the mobile broad-
band network technology of tomorrow and is available today already.

About the author

I studied Communication Systems and Networks at the
Wrocław University of Technology and the Technische
Universität München. With over ten years of experience
in system research and software development
I have been engaged in automobile system software
standardization, telematics systems integration, and
radio modules development. Currently, I am working in
the fi eld of LTE software development. I am interested
in software engineering, discrete mathematics,
competence development, and cooperation with local
universities. In my free time I practice triathlon.

Grzegorz Olender
R&D Manager
MBB FDD LTE

data coordination data coordination

a) joint transmission
joint reception

b) coordinated scheduling
coordinated beamforming

Nokia Shaping the future of telecommunication. Check how the experts do it. 47Nokia Shaping the future of telecommunication. Check how the experts do it.4646

Telecommunication System Engineering

 Michał Koziar
Engineer, Hardware Integration
MBB Radio Frequency

OBSAI and CPRI – Internal Transport
Interfaces in Base Stations

Zdzisław Nowacki
Engineer, Hardware Integration
MBB Radio Frequency

1. Introduction

1.1. Cell types and their impact on BTS parameters
To describe the role of internal transport interfaces we have to start
from a short introduction to the concept of cellular networks. Their
key elements are Base Transceiver Stations (BTSs). The BTS archi-
tecture and parameters must be strictly adjusted to network oper-
ator requirements like cell area and capacity meant as the maximum
number of voice calls and data transfer. Figure 1 shows an example
of a cellular network.

In this kind of network we can distinguish several types of cells:

• Pico cells (marked in blue) have a small range and are typically
installed in dense urban areas with large number of voice calls
and high data transfer.

• Micro cells (marked in navy blue) have a medium range and are
dedicated to areas with medium voice and data traffi c.

• Macro cells (marked in gray) provide ranges higher than
micro cells.

The cell type has an impact on BTS requirements like transmitter pow-
er, number of antenna sectors, baseband block with DSP resources
related to traffi c processing e.g. channel coding. For example, a small-
cell BTS mounted in a city center will have to handle a lot of voice
calls and high data transfer. So, this type of BTS will contain a complex
baseband with high DSP processing capability, but the RF transmitter
may a have small output power. The opposite of a small cell is a macro
cell. This kind of cells can be located in areas with low housing density
which has an impact on the coverage area – the radius of such a cell
can be 20 km or more. To cover a large area, a transmitter with high
output power is needed. But in contrast to a BTS installed in a small
cell, the baseband block can be less complex because of a lower traf-
fi c. The above-mentioned examples show that architecture of BTS
must be scalable and modular. In 1G and 2G technology networks
BTSs were based on an all-in-one architecture. Analog and digital
electronics were installed in a large cabinet [8] placed in a special
equipment room with air condition, backup battery etc. A relatively
large area required for such a BTS installation would raise the cost of
operation and limit installation location options. Thanks to miniatur-
ization of electronic components, as well as boost in their effi ciency,
a distributed BTS architecture has been introduced for 3G networks.

Figure 1 Cellular network and cell types.

city suburb rurally

cellsize

density of
users/km2

10

102

103

104

105

Nokia Shaping the future of telecommunication. Check how the experts do it. 49Nokia Shaping the future of telecommunication. Check how the experts do it.48

These modules can be grouped into two main blocks:
• Radio Block, which includes all functionalities related to RF and IF

signal processing
• Baseband Block, which includes all functionalities related to DSP

processing and connectivity with the rest of cellular network
elements

Distributed BTS architecture is based on a physical separation of
Baseband Block and Radio Block. Radio Block can be installed close
to the antenna. Short cables from the RF amplifi er to the antenna
limit RF signal loss and increase the BTS power effi ciency. There is
required an effi cient transport interface between these blocks.

Let us consider a specifi c case of network structure – cells located
along a highway with low housing density. In this situation we can
expect a rather low traffi c and data transfer but a large radius of the
cell. That means the BTS can be built with a Radio Block containing
a high output power RF amplifi er and a Baseband Block with low or
medium DSP processing power. Two possible topologies are shown
in Figure 3 . In case of a chain topology, total capacity of air inter-
face is limited by link capacity that connects Radio Blocks with the
Baseband Block. Additionally, distance from the Baseband Block to
the farthest Radio Block imposes certain restrictions. That will be
discussed later in this article. For star topology, link capacity is not
so critical. When traffi c grows in only one cell, the network operator
can add an additional Baseband Block. However, the star topology
may require use of optical fi bers with a bigger total length and more
cable laying works. In practice, the number of confi gurations for in-
terconnection between the Baseband Block and the Radio Block is
much larger than presented in this article. More details can be found
in sections 2.3 [2] and 3.3 [1].

As we can see, this kind of solution, based on modularity, off ers scal-
ability, easy network extension, and optimal infrastructure usage.

 Figure 2 BTS block scheme.

1.1. Distributed BTS architecture
Figure 2 presents a block diagram of a BTS. The blocks are as
follows:

• DSP Block – responsible for digital signal processing like
scrambling or channel coding

• Clock and synchronization
• Network interface block – responsible for communication

between the BTS and the rest of the network
• Intermediate Frequency block – responsible for downconverted

RF signal processing like modulation and demodulation
• RF Amplifi er in transmitter section
• RF Low Noise Amplifi er in receiver section

 Figure 3 Topology of connection between Radio Block
and Baseband Block for cells located along highway,
a) star topology, b) chain topology.

Baseband
Block

Baseband
Block

Radio Block 3Radio Block 2Radio Block 1

a)

b) Radio Block 3Radio Block 2Radio Block 1

Cell 1 Cell 2 Cell 3

DSP
Block

Network Interface

Clock and synchronization

IF
processing

RF Amplifer

Radio Block
To core
network

Baseband Block

RF Low Noise
Amplifer

RF Amplifer

RF Low Noise
Amplifer

D
U
P
L
E
X
E
R

during transmission of digital data with synchronous electrical and
optical links. The main points through which data is transmitted are
called Nodes.

Reference Point 3 Specifi cation defi nes three basic confi gurations:
a) point to point – modules are connected with the use of one or

more RP3/RP3-01 links
b) chain – modules are connected in chain with the use of one link

between the modules
c) point to multipoint – star confi guration

Various combinations of topologies mentioned above might be
used. In addition, the specifi cation allows the use of a combiner and
distribution modules.

The basic unit of information sent by links RP3/RP3-01 is the Mes-
sage. It is composed of a header (address 13 bits, type 5 bits, time
stamp 6 bits) and payload (16 bytes).

2. Role of transport interfaces in BTS
The role of transport interface in the BTS is as follows:

• Data transmission for air interface
• Control and management of data transmission
• Synchronization of transport interface with air interface

including compensation of delays in transport interface

2.1 Data transmission for air interface
Data for air interface has the biggest impact on the transport inter-
face line rate. As an example, let us consider 10 MHz LTE signal. Ac-
cording to 3GPP TS 36.211 [3] the sampling rate for such a signal is
15.36 Ms/s. Assuming that one sample has the length equal to 16 bit
and includes two symbols (I and Q), a result is that the data rate is
15360000 x 2 x 16 = 491.52 Mbps. For LTE 20 MHz, the sampling rate
can be 30.72 Ms/s which makes the data rate equal to 938.04 Mbps.
The number of used antenna carriers and the standard of radio in-
terface result in typical data rates reaching the range of a few Gbps.

2.2. Control and management of data transmission
Remote access to BTS parameters (e.g. temperature of power am-
plifi er in RF transceiver) and remote SW upgrade are important from
the control and management point of view. The size of control data
ranges over tens of Mbps. Typically, Ethernet data encapsulated into
transport interface is used for control purposes.

2.3. Synchronization of transport and air interfaces
Synchronization of transport and air interfaces is very important for
effi cient operation of cellular network. The example from Figure 3b is
to help describe the problem. Let us assume that the distance between
each Radio Block and Baseband Block is 5 km. For such connections sin-
gle mode optical fi bers are used. Their propagation delay is around 5 μs
per km. So, propagation delay for data from Baseband Block to the fi rst
Radio Block will be 25 μs and 75 μs for the last Radio Block.

IQ data for radio interface is sent in the transport interface frame
and is inserted into the air frame. All the cells are synchronized which
means that air frame for cell 1 starts exactly at the same moment as
in cell 2 or 3. Propagation delay causes IQ data in cell 3 to be 50 μs
later than in cell 1. This delay needs to be compensated. Compensa-
tion is a complex process that starts with accurate measurements
of propagation delays within the optical interface. Typical accuracy
is in a range of single nanoseconds. After that each element of net-
work sets its internal buff er so that it compensates latencies. For
more detailed examples, see section paragraph 3.2.

3. Standards

3.1. OBSAI RP3-01
One of the interfaces used in Nokia BTSs is Open Base Station Ar-
chitecture Initiative, Reference Point 3 (OBSAI RP3/RP3-01 [1]). This
specifi cation defi nes a number of solutions to problems that occur

Figure 4 RP3 interface extended over two cabinets by connecting
combiner and distributor modules (C/D) together.

C/D

C/D

RF
Module

RF
Module

RF
Module

BB
Module

BB
Module

BB
Module

BB
Module

RF
Module

RF
Module

RF
Module

Cabinet #1

Cabinet #2

RP3

Nokia Shaping the future of telecommunication. Check how the experts do it. 51Nokia Shaping the future of telecommunication. Check how the experts do it.50

Address defi nes the Node where the Message must arrive. If the
Node mediates communication between the participating nodes,
the communication is based on the routing map and the Message
is passed on.

Messages are divided into two groups:
a) IQ data messages (Antenna Carrier data)
b) Control messages (used for confi guring the Node and transmit-

ting other protocols e.g. Ethernet)

20 IQ messages and one control message form a Message Group
(MG). After that the K.28.5 mark is sent for synchronization issues.
After 1920 Message Groups (in case of line rate 1x – for details, see
 Table 1) are formed and sent, the frame continues with the K.28.7
mark – the end of Frame. Frame duration is 10 ms.

We can see that 20% of the data sent is lost in favor of service link
(timing and control data).

Figure 5 Layers in OBSAI RP3/RP3-01.

Table 1 Relation of link rate and data capacity.

Link rate Link speed

Mbit/s

No of Msgs
Groups in Frame

No of IQ data msgs
in Frame

bytes/frame

IQ data transmission

bit/s

Link capacity
without 8b/10b

coding
%

Total Link capacity

%

x1 768 1920 38400 491520000 80 64

x2 1536 3840 76800 983040000 80 64

x4 3072 7680 153600 1966080000 80 64

x8 6144 15360 307200 3932160000 80 64

Figure 6 RP3/RP3-01 Frame (Line rate 1x).

TRANSPORT LAYER PAYLOAD

APPLICATION LAYER

TRANSPORT LAYER

DATALINK LAYER

PHYSICAL LAYER

ADDRESS TYPE TIMESTAMP APPLICATION PAYLOAD DATA

MESSAGE MESSAGE

BIT STREAM

ADDRESS

8B10B

processing delays T2a and Ta3 need to be included into calculations.
They are the sum of latencies in analog part of RE (i.e. fi lters, amplifi -
ers) and latencies in digital part.

 Figure 8 CPRI frame hierarchy.

3.2. CPRI
The other interface standard dedicated to BTS is Common Public
Radio Interface (CPRI). The standard defi nes division of a BTS into
two blocks shown in Figure 7 :

• Radio Equipment Control (REC) that plays the role of Baseband
Block

• Radio Equipment (RE) that plays the role of Radio Block

The structure of data in CPRI is shown in Figure 8 . CPRI frame du-
ration is 10 ms, the same as in OBSAI. CPRI frame consists of 150
hyperframes with index Z = 0…149. Each hyperframe consists of 256
basic frames with index X = 0…255. Each basic frame consists of
16 words with index W = 0…15. The length of a word depends on the
CPRI line rate. For 614.4 Mbps, the word length is 8 bits but for line
rate 9830.4 Mbps the word length is 128 bits. More details can be
found in section 4.2.7 [2].

In contrast to OBSAI, CPRI does not send information about the
type of data or about the fi nal destination of data. CPRI strictly de-
fi nes location of each type of data. For example, Ethernet payload
encapsulation is defi ned by pointer p which can be fl exibly confi g-
ured by setting control byte Z.194.0. In general, absence of addi-
tional headers containing information about type and address caus-
es CPRI for the same line rate as OBSAI to have higher capacity for
IQ and control data. Currently, CPRI’s maximum line rate is 12165.12
Mbps, compared to 6144 Mbps in OBSAI. More information about
diff erences between CPRI and OBSAI can be found in [4].

3.2.1. Propagation delays
Each optical link has its own propagation delays: downlink T12 and up-
link T34 that are strictly related to transport interface. Additionally,

Figure 7 Architecture of BTS according to CPRI.

Radio Base Station System

Radio Equipment Control (REC)

Air InterfaceNetwork Interface

Control
& Mgmt Sync User

Plane

Common Public Radio Interface

Master port Slave port

Layer 2

Layer 1

SAPCM SAPS SAPIQ

Radio Equipment (RE)

Control
& Mgmt Sync User

Plane

Layer 2

Layer 1

SAPCM SAPS SAPIQ

CPRI link

W: word number in basic frame

Y: byte number within word

basic frame
(1 Tchip = 260.42 ns)

X: basic frame number

hyperframe
(256 basic frames = 66.67 μs)

Z: hyperframe number

CPRI 10 ms frame
(150 hyper frames = 10 ms)

BFN

#0 #Z #149

#0 #X #255

1 15 bytes

Y

W

8 bits

M
0

… … … … … …
M
2
0

M
0

M
3
8
3
8
0

M
1
9

Frame 0

MG 0 K28.5 K28.5 K28.5 K28.7MG 1 MG 1919

Frame 1

M
3
8
3
9
9

M
3
9

M
1

M
2
1

M
3
8
3
8
1

C
0

C
1
9
1
9

C
1
9
1
8

C
1

Nokia Shaping the future of telecommunication. Check how the experts do it. 53Nokia Shaping the future of telecommunication. Check how the experts do it.52

Figure 10 Diff erential transmission in time.

With the information thus obtained (0 or 1) our signal goes to a cir-
cuit called the Serializer/Deserializer (SerDes). Because the data is
transmitted in a serial way – bit by bit, we have to group it somehow.
The circuit SerDes puts our individual data bits together into bytes.
A benefi t is that processors involved in the processing of this infor-
mation do not require high speeds and consequently consume less
energy. Our fi rst readable unit of information contains 10 bits. This
technology uses 8b/10b coding, which enables serial data transmis-
sion through one pair of wires with high speed and without the use
of additional clock line. So the data that comes out of the SerDes
gets on the circuit, which aims to decode the 10 bits to 8 bits of in-
formation. This information is needed for building a frame structure
of RP3 or CPRI standard.

Figure 9 Defi nition of points for delay measurement.

4. Physical layer
To send any data from point A to B a communication medium is
needed. This medium forms the physical layer. The communication
interfaces OBSAI and CPRI, described above, use the physical layer
with a similar construction. The basic element is a link. It may be
electrical and optical.

4.1. Electrical link
With an electrical link, connection provides us with two pairs of wires:
one to receive, the other to transmit information. Let us call one of
the wires “+” and the other one “-“. The voltage diff erence between
the positive and negative is relative to 0 (GND). If it is positive, we call
this state a logical 1; if it is negative, we call this a logical state 0. It
is a diff erential transmission – we study a potential diff erence. More
information about diff erential signaling can be found in [7].

Figure 11 SERDES, 8B10B encoder/decoder, scrambling in high speed receiver and transmitter.

REC

R1 T12

T14 Toff set

T34

R2 Ra
T2a

Ta3

Reception
cod bit 0 is
received fi rst

Descrambling for
6144 Mbps line rate

Scrambling for
6144 Mbps line rate

8B10B Decoder8B10B Encoder

Transmission
cod bit 0 is

transmitted fi rst

R4 R3

RE

Commercially available FPGA chips include SerDes that works with
the line rate up to 30 Gbps. Rising line rates force semiconductor
manufacturers to increase research and development eff orts in or-
der to fi nd new technologies that will allow us to exceed physical
limitations of transmitting through a copper medium.

References
[1] OBSAI RP3-01
[2] CPRI Interface Specifi cation V6.1 http://www.cpri.info/down-

loads/CPRI_v_6_1_2014-07-01.pdf
[3] 3GPP TS 36.211
[4] Chrisian Lanzani “Open Base Station Architecture: Can Stand-

ardization can enable true innovation?” http://www.mti-mobile.
com/wp-content/uploads/2012/10/OBSAI_CPRI_Tutorial_and_
Primer_ver02.pdf

[5] Lattice Semiconductor 8b/10b Encoder/Decoder http://www.
latticesemi.com/~/media/LatticeSemi/Documents/Refer-
enceDesigns/1D/8b10bEncoderDecoder-Documentation.pdf?-
document_id=5653

[6] AFBR-57J5APZ Datasheet http://www.avagotech.com/docs/
AV02-0671EN

[7] Diff erential Pair Transmission Lines http://www.westmichi-
gan-emc.org/archive/2014%20IEEE%20Bill%20Spence%20
Diff %20Pairs.pdf

[8] Example BTS based on all in one architecture https://en.wikipe-
dia.org/wiki/Base_station_subsystem#/media/File:Deutsches_
Museum_-_The_guts_of_a_GSM_cell_site.jpg

About the authors

Both authors work as engineers in Hardware Integration
and Verifi cation team. In their daily work they deal with
OBSAI and CPRI interface integration. Our work is related
to BTS prototypes and focuses on aspects of the testing
of hardware and software associated with transport
interfaces, including reliability and performance.

Michał Koziar
Engineer, Hardware Integration
MBB Radio Frequency

Zdzisław Nowacki
Engineer, Hardware Integration
MBB Radio Frequency

One may be wondering how to fi nd out which bit is the fi rst one. This
is the role of the 8b/10b decoding circuit. Each subsequent byte is
stored in a specifi c way. To describe the fi rst bit, the circuit is calcu-
lating checksum of bits. More details about this can be found in the
8b/10b encoder/decoder specifi cation [5].

For OBSAI interface with the speed above 6 Gbps, scrambling is
used. Scrambling is the process of multiplying each of the trans-
ferred bytes (does not apply to K-marks) by the constant bit pat-
tern. That serves to minimize crosstalk between electrical links.

4.2. Optical link
Data transmitted by electrical link may be converted into light.
That task is entrusted to Small Form-factor pluggable (SFP) [6].
SFP is not involved in any way in the encoding or decoding of data.
It can only indicate a lack of data on an optical link. A standard opti-
cal module uses two fi ber-optic cables per one link. There are also
bidirectional SFPs, which send data in both directions using a sin-
gle optical fi ber. For such a transmission two diff erent wavelengths
are used, one for each signal direction. A fi ber optic cable may have
a length of up to 40 km.

5. Conclusions
Interfaces described in this article are used to transfer data between
BTS modules. Due to the constant growth in demand for data trans-
mission, i.e. future 5G technology or wireless network evolution to-
wards Cloud – RAN architecture, the transport interfaces will need to
be more and more effi cient. In Cloud – RAN architecture the role of
Baseband Block will be implemented in centralized computing data
centers connected with a large number of Radio Blocks by Optical
Transport Networks (OTN) that utilize CWDM and DWDM technology.

SERDES

0 1 2 3 4 5 6 7 8 9

SERDES

0 1 2 3 4 5 6 7 8 9

HGFEDCBA

abcdeifghj abcdeifghj

8 8

1010

8

HGFEDCBA

U[V] 1 0

0

1 0

T[s]GND

Nokia Shaping the future of telecommunication. Check how the experts do it. 55Nokia Shaping the future of telecommunication. Check how the experts do it.5454

Telecommunication System Engineering

LTE Global Verifi cation – Testing In
End-to-end Environment

 Radosław Idasiak
R&D Manager
LTE Feature Verifi cation

1. Introduction
In this article we describe how Nokia implemented feature develop-
ment process and how our engineers examine the Long Term Evo-
lution (LTE) system in an End-to-End (E2E) environment in order to
achieve proper software quality and deliver clear information about
new functionalities of the product to the customers.

First of all – everything is a feature. The Institute of Electrical and
Electronics Engineers defi nes the term feature in IEEE 829 Standard
for Software and System Test Documentation as:

“A distinguishing characteristic of a software item (e.g., perfor-
mance, portability, or functionality).”

In our case it means that all of us work on certain functionalities,
named features which represent a specifi c function in our LTE prod-
uct. Features are functionalities desired by our customers based on
their requirements or market demands.

What is important to understand is the fact that all the teams in-
volved in product development and software life cycle development
work on the same features. We all have the same goal – creating new
functionalities in the system, by designing specifi cations, develop-
ing the code, testing the entity and the system. We all use the same
documentation that delivers feature description, user scenarios,
references to other parts of the system and requirements for the
hardware. The entire process is presented in Figure 1 .

System Architecture designs feature specifi cation, usually based on
external documents (i.e. 3rd Generation Partnership Project – 3GPP)
or customer’s requirements. Their goal is to describe in detail the
purpose of the functionality, all scenarios, interaction with other el-
ements and usage possibilities by taking into account the already
existing product interfaces and components.

Feature Teams are responsible for feature development based on
specifi cation provided by System Architects. They test functional-
ities which can work with real or simulated network elements on an
entity level.

Figure 1 Feature development process fl ow.

Global Verifi cation performs feature testing in the end-to-end en-
vironment with real elements, starting form User Equipment (UE)
and ending on specifi c Core Network (CN) elements. The goal is to
test and verify the whole system behavior in a given scenario. Here
we have system test execution. Global Verifi cation organization is
mainly responsible for testing new feature, but it also supports the
maintenance phase together with Technical Support teams.

All feature requirements are taken into consideration. The test
environment refl ects the customer’s live network conditions and
end user scenarios. This kind of testing can usually take place in
the laboratories. Sometimes there’s a need to run specifi c cases in
the fi eld, where all Base Stations are deployed as in normal oper-
ator’s network. Responsibility given to this unit is very big. Global
Verifi cation is the last organization that tests the product before
the offi cial, commercial release into the market. We need to ensure
that the coverage and tested scenarios deliver reliable results in or-
der to make the fi nal decision about the product release. Working
with the LTE product version that will be available i.e. one year from
now is exiting, but also brings certain challenges in normal day-to-
day activities.

In order to better refl ect the customer’s confi gurations and re-
quirements, our engineers keep in continuous contact with custom-
er teams around the world. This allows us to always get the most
accurate information about the required hardware or confi guration
values. As a result we’re able to prepare the whole test environment
with almost identical conditions as our customer’s real network is
accustomed to. Based on this and feature specifi cations, testers
create test procedures that are executed to check system behavior.
Each tester is recognized outside of the Global Verifi cation organ-
ization as the main representative for system testing of assigned
functionality.

Technical Support works on all tickets reported by our customers
after our product is available in their network. Technical Support is
responsible for all levels of on-site and remote support, so in case
something is not working properly, all customer’s requests and es-
calations are reported to this organization.

Product offi cially
released to the customers

System
Architecture

(SA)

Feature
Teams (FT)

Global
Verifi cation

(GloVer)

Technical
Support

• Feature
system testing

• Real E2E
environment

• Maintenance
support

• Customer
support

• Feature
development

• Feature entity
level testing

• Feature
specifi cation

• Feature scope
defi nition

Nokia Shaping the future of telecommunication. Check how the experts do it. 57Nokia Shaping the future of telecommunication. Check how the experts do it.56

Figure 2 Example of Base Station HW confi guration.

In order to introduce RF-Sharing and deploy LTE network on already
used frequency bands, we can add a new System Module. An over-
view of the confi guration is presented in Figure 3 .

Figure 3 Basic RF-Sharing HW confi guration (3G-4G example).

Remember – we can have more Radio Modules in such confi gurations
which allow more cells to be defi ned or to cover more band combi-
nations. Everything depends on our customer’s requirements. Dif-
ferent Radio Access Technologies can operate simultaneously with
carrier signals being transmitted and received via the same radio
frequency unit. Multiple signals are transmitted through a broad-
band power amplifi er, which shares its power source with defi ned
carriers.

From the operator’s point of view such confi gurations are seen
as two separate logical network elements with common radio re-
sources. Each radio technology has dedicated logical backhaul con-
nections to radio controllers or other Core Network elements. Ra-
dio Resources are shared between both technologies in the same
frequency band (both Radio Access Technologies (RAT))and use
a common antenna system connected to the shared radio resourc-
es). The requirement that both system modules are synchronized
together to share common radio resources is very important.

2. Projects
Nokia runs several projects within the MBB LTE organization. In this
article we will focus on following ones:

• RF-Sharing
• Trace Management

To cover the whole project scope from the system’s perspective we
need to ensure that all requirements are covered in our laborato-
ry. Each engineer works on dedicated test equipment that covers
a wide range of diff erent elements and tools. By default all testers
are equipped with:

• Set of UEs (usually newest smartphone models, or chipset
vendor’s prototypes) that allow testing newest functionalities
implemented on network elements.

• LTE Evolved Node B (eNB) in diff erent hardware (HW) variants and
confi gurations to cover wider customer setups.

• Servers for logging data.
• Programmable attenuators and shieldboxes to refl ect live

network behavior.

The test area assigned HW may vary, but each engineer can work
independently.

2.1. RF-Sharing
The RF-Sharing project aims to test features that allow Global Sys-
tem for Mobile Communications (GSM), Wideband Code Division Mul-
tiple Access (WCDMA) (used as a synonym for Universal Mobile Tele-
communications System (UMTS)) and LTE to work on the same radio
equipment. This introduces OPEX savings for customers and off ers
seamless LTE migration from currently existing and deployed Sec-
ond-Generation Wireless Telephone Technology (2G) and Third Gen-
eration of Mobile Telecommunications Technology (3G) networks. We
just need to add one small part of the HW to the already available 2G
Base Transceiver Station (BTS) or 3G Node B (NB) to have LTE network.

Base stations are made up of System Modules and Radio Modules.
This is one of the most basic HW confi gurations but it can also in-
clude:

• Extension modules inside of System Module, so in the end we can
have bigger Base Station capacity or better performance.

• Antenna Line Devices (i.e. Remote Electrical Tilt (RET), Mast Head
Amplifi er (MHA)).

The System Module provides baseband processing, control and
transmission functionality. The Radio Module is a stand-alone, tech-
nology independent, fully operational transceiver unit with a wide-
band transmission and reception technology inside that uses mul-
ti-carrier power amplifi ers and wideband receivers. A basic overview
is shown in Figure 2 .

System Module

Radio Module

Radio Module

LTE System Module

WCDMA System Module Radio Module

Radio Module

ways able to check if everything is working correctly. ISO/OSI model,
LTE, WCDMA, GSM interface specifi cation must be well understood.
Using internal Base Station sniffi ng mechanisms or external moni-
toring services, we analyze the message fl ow and compare it with
the specifi cations. All layers are checked starting from the physical
side and ending on the application layer.

During confi guration management we test diff erent parameter val-
ue variants, cell setups, operational bandwidths, antenna power
output and many others. The operational bandwidth that limits the
number of carriers which can be handled simultaneously by single
radio module pipe must be thoroughly investigated. It is very impor-
tant to remember that all carriers must stay within the bandwidth
designed for the Radio Module as each customer has a dedicated
frequency range that can be used to deploy the service. This de-
termines how many cells and which bandwidth values can be used.
A simple example is shown in Figure 4 and Figure 5 . Note that the
carrier confi gurations depend on the HW variant and on the permit-
ted bandwidth of the Radio Module.

Each Radio Module is equipped with a single Multi Carrier Power Am-
plifi er (MCPA) per antenna pipe. While testing our customer’s con-
fi gurations we also check the cell power output values to see if both
technologies function without confl icts. As in case of operational
bandwidth, here the maximum output power at the antenna con-

In order to test it thoroughly, we need to follow the customer’s con-
fi gurations and requirements. To realize this, we can monitor the
customer’s network and obtain necessary information about de-
ployed confi gurations. But the HW is not the only thing that we must
focus on here. In order to refl ect real life usage diff erent kinds of
parameters must be taken into account. Therefore our scope cov-
ers both areas. In the fi rst phase of testing we focus on HW variants
and all possible confi gurations. They are setup in the laboratory
and tested to see if all connected units are properly detected. Here
we need to follow the cabling description and OBSAI RP3, optical or
Ethernet interfaces specifi cation.

The next step covers the most basic part – software update. The
aim of this test is to check whether all Base Station components
faultlessly function with the newest available software (SW). This is
checked for both cellular technologies. The right combination of SW
is crucial here. Customer delivery is always released with SW pack-
ages which cannot be changed. System testing needs to check if in-
ternal communication between System Module and Radio Module
functions properly. In the end, the entire confi guration connects to
other network elements and service is successfully provided.

Base station and other network elements have diff erent kinds of
logs for all internal applications and processes. Following 3GPP
specifi cations together with internal feature descriptions we are al-

Figure 4 20 MHz carrier confi guration for 3G-4G RF-Sharing – example 1.

Figure 5 20 MHz carrier confi guration for 3G-4G RF-Sharing – example 2.

4.6 MHz 4.6 MHz 5 MHz

f1

5 MHz

20 MHz

f2

5 MHz
f3

5 MHz
f4

5 MHz

WCDMA LTE

frequency

f1

5 MHz

4.6 MHz 7.5 MHz

20 MHz

f2

5 MHz
frequency

WCDMA LTE

f3

10 MHz

Nokia Shaping the future of telecommunication. Check how the experts do it. 59Nokia Shaping the future of telecommunication. Check how the experts do it.58

erator to see exactly what happens in the network on diff erent com-
munication levels. The customer has the possibility to start the cell
or subscriber trace and explore whole network behavior. Testers try
to refl ect subscriber behavior from the normal live network. After-
wards they check whether all messages were properly transferred
between UE, eNB Evolved Packet Core (EPC) and other elements ac-
cording to the usage of the OSS solution.

Trace testing involves a short procedure before preparing the whole
network confi guration. First we need to add certain parameters di-
rectly to the eNB, in order to activate the feature. Then we need to
confi gure the Trace Collection Entity application on our OSS system.
Activation involves selection of trace type:

• LTE Cell Trace supports tracing of the Layer 3 contents of S1-AP,
X2-AP and eUu RRC messages of Control Plane. Additionally
via the vendor specifi c extension we also test parts of the MAC
and RLC information. Note that the user plane is not traced.
Before collecting the network messages cell selection must be
performed.

Figure 6 Example of Cell Trace confi guration on Trace Collection
Entity.

nector also depends on the HW variant. The maximum output power
of the MCPA is shared among defi ned carriers, therefore it must be
aligned with the number of carriers handled by the given MCPA. So
if certain Radio Module supports 60W output power, we can divide it
between technologies under the condition that the sum is equal to
this value. Testing a radio signal on an antenna line with dedicated
measuring HW on the physical layer and performing diff erent call
processing scenarios provides the fi nal test results and confi rms if
everything functions properly.

As mentioned earlier, the Operating Support System (OSS) sees
each confi guration as a separate network element and therefore it
requires dedicated tests for both technologies to verify if Opera-
tions & Maintenance (O&M) and Call Processing (CP) work correctly.
Independent confi gurations based on providing parameters checks
whether all values are correct. In order to thoroughly test the inde-
pendence of both confi gurations we need to perform diff erent site
resets, modules (un)block or cells (un)lock scenarios starting with
the LTE Base Station, where on the other (2G BTS or 3G BTS) we
have some services running in parallel i.e. data calls. In the end we
can test it in reverse in order to ensure ourselves that there are no
consequences. The same approach is used for Fault Management,
Performance Management or Call Processing scenarios. To test the
interaction between both technologies all scenarios that we con-
sider to be important for customers are in our test scope i.e. Voice
over LTE (VoLTE) calls followed by performing Single Radio-Voice Call
Continuity (SRVCC), external Network Assisted Cell Change (eNACC)
and diff erent types of handovers. Verifi cation always includes coun-
ters values check in our dedicated OSS element, the same way as
customer monitors its own network.

All the above tasks require specialist knowledge of cellular networks
including 2G BTS, NodeB, eNodeB, Radio Network Controller (RNC),
Serving GPRS Support Node (SGSN), General Packet Radio Service
(GPRS) Gateway GPRS Support Node (GGSN), Base Station Controller
(BSC), Mobility Management Entity (MME), Serving Gateway (S-GW),
Packet Data Network Gateway (P-GW) and many others.

RF-sharing combines multiple radio technologies together and
guarantees more effi cient hardware utilization through shared re-
sources. Therefore, an RF-sharing engineer faces the challenges
that come from multiple aspects related to mobile communications.
As a consequence, working with the RF-sharing solutions reveals
an opportunity to spread the knowledge, practice and experience
among all key elements of LTE-A, WCDMA and GSM as well.

Michal Kucharzak
Engineer, LTE Feature Verifi cation

2.2. Trace Management
Features grouped under Trace Management functionalities provide
a unique perspective when monitoring networks. This allows the op-

Trace Management allows the customer to look at the mobile net-
work on diff erent levels, not only network level KPIs. With Trace Man-
agement a single UE, call or cell can be monitored in order to get
useful information for troubleshooting or feedback about network
quality and capacity.

Adam Bartkowski
R&D Manager, Feature Verifi cation

3. Summary
Our goal is to provide our customers with the most up-to-date LTE
solutions with assured SW quality. This requires constant product
monitoring and testing. We realize this by focusing on diff erent
areas in E2E system level tests. We can be sure about one thing –
there’s nothing that we can’t do in our laboratories to gain confi -
dence in our LTE product quality. Each day we challenge ourselves
by going deeper and deeper into customer’s requirements through
cooperating closely with architects, developers, entity testers and
customer teams. Everything is done to achieve superior system
testing results.

References
[1] TS 32.421 Telecommunication management; Subscriber

and equipment trace; Trace concepts and requirements
[2] TS 32.422 Telecommunication management; Subscriber and

equipment trace; Trace control and confi guration management
[3] TS 32.423 Telecommunication management; Subscriber and

equipment trace; Trace data defi nition and management
[4] 3GPP specifi cations – http://www.3gpp.org/specifi cations/

specifi cations

About the author

Graduate of Wrocław University of Technology,
awarded a M.Sc., Eng. in ICT in Faculty of Electronics.
I’m leading a team of engineers in Global Verifi cation
organization within MBB FDD LTE business line.
My team is responsible for end-to-end system tests
for Nokia LTE product.

Radosław Idasiak
R&D Manager,
LTE Feature Verifi cation

• LTE Subscriber Trace provides detailed subscriber oriented
information for one or more specifi c mobile(s) at call level. Testing
for this functionality is even done at equipment level. It can be
done for a limited period of time for specifi c analysis purposes,
e.g. for root cause determination of a malfunctioning mobile
phone, advanced troubleshooting, resource usage and quality
optimization, radio frequency coverage control and capacity
improvement, dropped call analysis or E2E procedure validation.
Such tracing types use International Mobile Subscriber Identity
(IMSI) or International Mobile Equipment Identity (IMEI) data to
collect all required information. For this reason we need to also
communicate with EPC elements in order to obtain IMSI or IMEI.
The IMSI information needs to be provided from the core network
element based on 3GPP defi ned messages and is included in
the trace data content. This is why we need to check whether
the eNB is sending unique trace reference to the MME via the S1
connection during the tests. After this we check if upon receiving
such message the MME resolves the IMSI and the IMEI of the given
call and sends the IMSI, IMEI numbers together with the trace
reference to the Trace Collection Entity. Finally, we check if Trace
Collection Entity combines the information from eNB and MME
correctly and if all traced data are presented in the right way.

Trace verifi cation is done according to internal specifi cation and the
following 3GPP documents [1, 2, 3]. The fi nal trace results are sorted
by received messages per connection (e.g. using X2AP ID or S1AP ID).
We present a message fl ow for each connection and select the single
message to see all details. We also need to check the call processing
procedures (e.g. setup, release, HO, etc) and investigate all abnormal
behaviors (e.g. call drops, Negative-Acknowledgment (NACKs) etc).
This way we’re able to check if the whole feature is working correctly.

Nokia Shaping the future of telecommunication. Check how the experts do it. 61Nokia Shaping the future of telecommunication. Check how the experts do it.6060

Telecommunication System Engineering

 Szymon Góratowski
Integration and Verifi cation Engineer
MBB FDD LTE

Determining the Priorities
of eNodeB Software Tests

1. Introduction
Software testing is an inevitable part of software development pro-
cess and it should be started as soon as possible. Software errors
can occur at every stage of the software development process.
Finding errors as fast as possible when creating software can save
time, money and employees’ eff ort. Undetected errors can lead to
serious consequences in the future implementation of the project.
If an error is detected in the software after selling an offi cial build
to the customer, the company providing the software loses prestige
on the market. Errors detected on the customer side can also be
associated with high penalties.

It is also important to separate the responsibility for testing the
code between the developer and tester. For development testing
(e.g. unit, component, and system testing) main objective may be to
cause as many failures as possible so that defects in the software
are identifi ed and can be fi xed. Testing and debugging are diff erent.
Debugging is the development activity that fi nds, analyzes and re-
moves the cause of the failure [1].

2. Unique test environment
Testing software which is running on hardware is signifi cantly diff er-
ent from testing websites or programs. The software is adapted to
the requirements of the eNodeB hardware. Testers must be careful
not to destroy the device during software installation and testing.
Testers are also responsible for the correct eNodeB connection to
the core network and to other network devices. It is very hard to
achieve conditions similar to the customer’s network in a laborato-
ry. However, it is very important because eNodeB’s behavior during
the testing should be the same as in the real network.

3. Types of eNodeB’s features tests
To verify a new functionality of eNodeB, testers need to design
tests that cover the changed software code added during the fea-
ture implementation. Test types can be divided into functional and
non-functional.

Functional tests verify the function of the code. Scenarios for
a functional test can be found in code documentation. These tests
check if new implemented functionality works as it was described in
the feature specifi cation. Functional testing considers the external
behavior of the software. Interoperability tests, which show how the
function interacts with one or more other functions, also belong to
functional tests family [1].

Non-functional tests are not related to the function of the code. They
include performance testing, load testing, stress testing, usability
testing, maintainability testing, and reliability testing. Non-functional
tests verify the external behavior of the software [1].

We can also divide the tests with regard to the scope of the new feature
verifi cation. Sometimes new features are very complex and consist

of smaller functions, which can be tested separately. The division of
complex feature into smaller parts facilitates the testing and simplifi es
analysis of the test results. After testing the components separately,
test of the entire feature should be focused on the input conditions,
fi nal results, and interactions between previously tested components.

It is also worth to mention the regression tests. Regression testing
is repeating tests already tested on the software after code modifi -
cation. Those tests are performed to discover defects, which can be
caused by the code modifi cation [1]. Regression testing should be
automated as much as possible. Automated environment setup and
automated regression tests are faster than manual testing. Shorter
testing time results in a lower testing cost.

Another very important type of software test is interoperability
test. Implementation of new functionality in the software occasion-
ally has impact on previously implemented functions. It is very im-
portant to check whether the implementation of a new functionality
does not bring errors to interaction with cooperating functions. If
there is a possibility to activate several features of eNodeB at the
same time, including the one newly implemented, there is a need to
verify the correct operation of all functions.

Tests can also verify the stabilization of the software code. For this
purpose, stability tests are created. They check the stability of the
implemented function for longer time than a single functional test.
In practice, duration of the stability testing should be longer than 24
hours. Such a long testing time is required to check whether a new-
ly implemented feature does not suspend nor crash the eNodeB.
Stabilization tests also verify the capacity of the memory buff ers
on the eNodeB and if there is no overfl ow. Memory buff ers should
not be fi lled to the maximum capacity because it can lead to eNo-
deB’s slow down or even a crash.

There are also other divisions of software tests, for example, with
regard to the purpose of testing or the means used.

4. Prioritization of eNodeB tests
Software testing can provide objective, independent information
about the quality of software. When testing detects a bug, the code
is subsequently repaired and the overall quality of the software in-
creases. Defi nition of software quality may be twofold:

1. Software functional quality – how the fi nal software product
meets the technical documentation and design objectives.

2. Software structural quality – how the fi nal software product re-
fl ects non-behavioral requirements [2].

The purpose of testing is to eliminate bugs and errors, which ap-
pear in the software code. But we must remember that there is no
possibility to verify all scenarios. That is why we need to perform
prioritization of eNodeB tests.

Nokia Shaping the future of telecommunication. Check how the experts do it. 63Nokia Shaping the future of telecommunication. Check how the experts do it.62

change of the code. The aim of these tests is to check if a function
is working correctly after change implementation.

During testing tester ought to fi nd the right balance between the
amount of testing and software code coverage. Prioritization of
tests helps to do it properly.

5. Conclusion
Developing suitable test is not easy. Prioritization can highlight code
functions that are important for some reason. Importance hierar-
chy of test may depend on various factors, such as type, duration,
and other complexities. It depends on what tester wants to achieve
in the project objectives. Testing software developed for base sta-
tions is very complex and requires knowledge about the whole sys-
tem and base station architecture. The eNodeB’s software consists
of multiple components. Therefore tests verifying proper operation
of the component functions have to be adapted to the project doc-
umentation requirements.

Determining the priorities allows testers to classify components with
regard to degree of modifi cation. This technique helps in selecting
important software components and designing tests for them.

It is impossible to test the whole software without specifying the
depth of code infi ltration. To determine the depth of software pene-
tration by tests, tester should set priorities for all tests. Assigning test
priorities helps avoiding the creation and execution of unnecessary
tests, determining the importance of tests, and selecting the most
important tests if the time to complete the testing is insuffi cient.

References
[1] “Certifi ed Tester – Foundation Level Syllabus”, international

Software Testing Qualifi cation Board.
[2] Pressman, S., Software Engineering: A Practitioner’s Approach

(Sixth, International ed.), McGraw-Hill Education 2005.

Number of tests to execute should be determined by the level of
risk (technical and business) and budget limitations. An important
factor is also the time of testing. If there is enough time testers
can increase the number of tests or perform tests which require
extended period of time.

Unexpected situations or communication problems can cause delays
in the software testing. Defi ciency of time forces the tester to appro-
priately classify the tests, in other words, to determine which tests
are critical and must be performed. It also requires smart design of
test plans, so that the larger part of a new feature could be verifi ed
in one test. To reduce the number of test cases, tester should select
feature parts which are the most vulnerable to errors. This requires
deep knowledge and understanding of eNodeB architecture.

Test priority should depend on the complexity of implemented
function. The complex logic of software is one of the most common
causes of errors. Therefore complicated parts of the code should
be fully tested.

There is no possibility to test all software components. Tester has
to choose tests that will verify parts of the code that are sensitive
to errors. The hierarchy of priorities should take into consideration:

• complexity of code elements.
• importance of software function implemented by the change.
• value of functionalities from the customer point of view.
• feedback from developers about the part of software most

prone to errors.
• testing methods covering the largest number of functions.
• other parameters specifi c for the project.

Prioritizing is important in regression testing. By setting the test
priority, tester can select important tests and transform them into
regression tests. Regression tests have to be performed after every

About the author

I am a graduate of the Faculty of Telecommunication
at Electronics Department of Wrocław University
of Technology. I am working as an Integration and
Verifi cation Engineer in MBB FDD LTE C-Plane
department. Our team tests software developed
for the new functionality of base stations.
My responsibility is to test the new functionality in
eNodeB software. It is an interesting and challenging
work that requires constant improvement of
knowledge of LTE technology.

Szymon Góratowski
Integration and Verifi cation Engineer
MBB FDD LTE

Nokia Shaping the future of telecommunication. Check how the experts do it. 65Nokia Shaping the future of telecommunication. Check how the experts do it.6464

Telecommunication System Engineering

LTE L1 Call – the Necessary Condition
for LTE Testing

 Marek Salata
Engineer, Hardware Integration
MBB Radio Frequency

Introduction
Every person who has a basic understanding of how contemporary
telecommunications infrastructure works must realize that before
any such system begins its commercial operation, it has to be ex-
tensively evaluated. A set of tests aims at determining whether the
equipment used indeed functions as expected and conforms to
both internal company norms and international standards, as well
as supports interoperability with already deployed systems.

The necessity to pass restrictive tests pertains to all elements of
the network; however, this paper focuses specifi cally on an aspect of
Radio Module testing. It is one of the more frequently changing ele-
ments of the otherwise quite static network infrastructure, and, as
such, it comprises a broad range of equipment to choose from and
an equally vast testing ground. Radio Modules are typically located
on radio masts and have antennas connected to them to generate
electromagnetic signals, which ultimately give a cell its coverage.
There are multiple operating bandwidths, powers, and diff erent ac-
cess technologies involved, depending on the age of infrastructure,
the needs of the target market, deployment sites, preferences of
operators, how densely occupied a given frequency spectrum is,
expected cell coverage, and other factors. These features of radio
networks are common for multiple technologies, both frequency
division duplex (FDD) and time division duplex (TDD).

Figure 1 L1 Call in relation to layers of the ISO OSI model. [1]

The fundamental idea behind testing of a given radio module is to
determine if it works properly on the physical layer of the OSI mod-
el (see Figure 1). After all, there is no point in trying to transfer
and receive packets of tangible data when elements responsible for
managing the air interface are not working according to the design.
We need to ensure that the physical properties of an electromag-
netic signal generated at the radio antenna are exactly what the
product specifi cation predicts.

On the other hand, an equally important task is for the radio mod-
ule to properly decode a signal it has received from the outside.
3rd Generation Partnership Project (3GPP) specifi cations for long-

term evolution (LTE) predict several diff erent test models used to
emulate particular behavior of the equipment in question, consid-
ering various parameters we intend to measure. Depending on the
needs and capabilities of devices, downlink and uplink signals may
use variable modulation and coding schemes, diff erent number
of resource blocks, and many other features which adapt a sys-
tem to a particular working environment. In order to understand
the idea behind LTE test models, and subsequently the L1 Call,
one also has to know what orthogonal frequency division multi-
ple access (OFDMA) and single-carrier frequency division multiple
access (SC-FDMA) are. These two modes of LTE access are used
for downlink and uplink respectively. Generally, for radio meas-
urements of downlink (transmission from the base station to the
user equipment; further referred to as DL), a signal analyzer is
required and Evolved Test Models (E-TMs) are used. Similarly, for
uplink (transmission from the user equipment to the base station;
further referred to as UL), we need to use a signal generator and
fi xed reference channels (FRCs).

Thus, what is a test model? The simplest explanation is that it is
a set of channels where known data is encoded and transmitted in
one of many predefi ned ways. Depending on what is needed, test
models are used for specifi c testing such as measuring adjacent
channel leakage ratio (ACLR), error vector magnitude (EVM), block
error rate (BLER), constellations, signal-to-noise ratio (SNR), and so
on. However, both DL and UL are measured apart from each other,
and in this separate radio frequency (RF) context each is accordingly
evaluated.

Aside from cases for the two situations – uplink and downlink –
mentioned in the previous paragraph, one of the most important
tests is that of a simultaneous transmission in opposite directions.
This is commonly known in Nokia’s technical jargon as an L1 Call;
“L1” means that it takes place on the fi rst layer of the OSI model
(see Figure 1), the physical layer, while “Call” means that both
sides of the connecting equipment transmit and receive signals
at the same time. It is important to mention test models fi rst be-
cause the L1 Call shares many of their features but also adds cer-
tain nuances. In very general terms, the L1 Call is somewhat similar
to running both UL and DL test models at the same time, using the
same RF path.

This is what has been described in this paper: what the L1 Call meas-
urement setup looks like, how its various elements are connected,
what equipment is used, and fi nally how the tests proper are carried
out. The purpose of the L1 Call is to prove that the physical layer
transmission in opposite directions can be established and main-
tained in preparation for higher OSI layers, where more complex
data processing takes place. The main parameters that are evalu-
ated are the block error rates and throughput for both uplink and
downlink. Additionally, features such as signal modulation and con-
stellation are checked.

L1 Call takes
place here

Application
Presentation

Session
Transport

Network
Data Link

Physical Layer

Nokia Shaping the future of telecommunication. Check how the experts do it. 67Nokia Shaping the future of telecommunication. Check how the experts do it.66

A Test Mobile is a user equipment emulator that allows us to simu-
late functionality of diff erent categories of devices (depending on
a license) that would normally interact with the BTS in a typical work-
ing environment. It off ers a range of operational frequencies be-
tween 400 MHz and 4000 MHz, suffi cient for all bands used by pres-
ent-day LTE network operators. Some types of Test Mobiles provide
diagnostic and monitoring software that allows testers to analyze
the user equipment (UE) side of the radio path. A Test Mobile is con-
trolled through scripts, which give testers certain fl exibility in how
we wish to carry out our measurements, including changing various
parameters that govern data transfer rates, modulation and coding
schemes, block error rates, and a number of other features; thus, it
is an exceedingly versatile device.

An RF path is typically a concentric cable of known parameters, ap-
proximately 2 meters long, with a variable attenuator in the middle.
One end is attached to the RM output, the other to an antenna port
on the Test Mobile.

A Control PC is, for all intents and purposes, a standard desktop
machine operating Nokia scripting software through which the SM
and RM are confi gured. A radio link between the BTS and Test Mobile
is established from here. The PC is connected to the devices on both
ends of the radio path via Ethernet cables and is our command and
control center from which we carry out our tests. This is where we
can view the results and collect logging data for further analysis.

As for the software used, the Test Mobile’s manufacturer provides
a Windows graphic user interface (GUI) application for the UE em-
ulator, which we use to carry out our measurements and monitor
the transmission. Its underlying system can in turn be controlled
remotely through another program which uses a scripting language
and is the software mainframe behind everything we do in our lab-
oratories. It facilitates connections to the SM, RM and Test Mobile,
collects information and logging data from all devices, and sends
control messages to System and Radio Modules. It encompasses
multiple technologies; it detects and confi gures all types of hard-
ware we may want to use, down to minute diff erences in types of

1. Description of the measurement setup
What exactly is the L1 Call in practice? We know it is a test used to
determine the ability of a radio module to simultaneously transmit
and receive signals, but what does the measurement setup look
like? Figure 2 is meant to shed some light on these questions.

A Control PC is connected to both the System Module and Test
Mobile through Ethernet cables. The System Module is connected
to the Radio Module via optical fi bers or electrical links. The Radio
Module is connected to the Test Mobile via an RF cable (more than
one in case of multiple inputs multiple outputs (MIMO), which will
not be discussed here) with adjustable attenuation, which forms the
radio frequency path.

In the scope of the L1 Call, the Radio Module is called the Device
Under Test (DUT), also referred to simply as RM. It is in the middle of
the L1 Call setup because its antennas transmit and receive signals
that are being measured on both ends. Instead of an air interface,
we connect the antenna outputs directly to the user equipment em-
ulator (in our case, it is the Test Mobile device) through an RF cable.
The reason for this is that we wish to eliminate any potential sources
of interference and instead focus on the physical capability of the
hardware to emit a proper electromagnetic signal and receive one
in return.

A System Module (SM) is an equivalent of a Base Station (BTS) and
the closest thing to a core network in the L1 Call setup. This is
where we in fact decode and analyze the signal that the RM has re-
ceived, but we also generate one to be transmitted by the RM. The
SM is a box with several programmable processors, each capable
of performing separate tasks. We connect to this entity with our
control PC over Ethernet. From there we can send certain instruc-
tions that will also reach the RM connected to the SM. There may
be situations where the two devices are far away from each other,
connected through up to six pairs of optical fi ber strands dozens
of kilometers long. Those are separate cases, however, since in our
standard L1 Call measurements, we use shorter lengths to simplify
the process.

Figure 2 Measurement setup.

Radio Module

System ModuleControl PC

Variable
Attenuation

Test Mobile

RF path

2) Test Mobile confi guration: what is left is activating the UE emula-
tor and connecting with the cell that has been set up in the previ-
ous step. Radio output/input of both the RM and Test Mobile are
connected through an RF cable, so the air interface is also ready.
The Test Mobile undergoes a similarly complex process of setting
up its own cell (analogous to what UEs normally do when powered
up) and synchronizes with our BTS. This leads us to the fi nal point.

3) Measurements: when synchronization is complete, the L1 Call
has been established. Test Mobile and SM+RM are sending and
receiving data to and from each direction, which can be verifi ed
using applicable monitoring software. Figures 4 and 5 present
an example of the L1 Call for 10 MHz bandwidth and frequencies
of 2,625 GHz for DL and 2,505 GHz for UL.

A Nokia application (see Figure 4) allows us to verify uplink trans-
mission. Several parameters are checked versus expected values: sig-
nal-to-interference-plus-noise Ratio (SINR) and BLER. The constellation
has to be clear and discernible, SINR has to be above zero, and BLER has
to be equal to zero; everything during a measurement period of one
minute. If these conditions are met, we know that UL works as expected.
The signal has been sent from the UE, through the RF path, received and
decoded at the RM, and fi nally sent to the SM over an optical fi ber. The
purpose of the L1 Call was to test the Radio Module’s ability to send and
receive. We now see that the signal has passed through every part of
that network element, from the antenna port all the way to the inter-
face between the RM and SM, and the rest of our BTS was able to further
process it. We can see a very strong signal (SINR around 30.4) trans-
mitted with a 16QAM modulation, clear constellation and no errors.

A sample measurement using Test Mobile’s interface is shown in
Figures 5 and 6 . It is the same L1 Call test scenario as present-
ed in Figure 4 , but this time we analyze downlink. Our signal, with
a 64QAM modulation, (see Figure 5) shows a clear constellation
and no transmission errors. This digital signal has been generated in
the SM. Then, it has been sent to the RM, which has converted it to
an analog signal, and transmitted it through the antenna over the RF
path to our UE emulator. There, it has been received and analyzed
also during a one-minute measurement period.

processors, fi rmware versions, number of DUTs, the sort of small
formfactor pluggables (SFPs – optical-electrical signal converters)
we are using, and a great many other things.

2. L1 Call procedure
The L1 Call is essentially a straightforward and logical procedure.
Figure 3 presents a block diagram of each step that has to be taken
to fi nalize a call; each step has been described below.

Figure 3 Basic steps that lead to establishing L1 Call.

1) Hardware Confi guration: it is a process of setting up all the com-
ponents of SM and RM to be ready for signal processing. Then,
a cell setup both for downlink and uplink takes place; reference and
synchronization signals start being transmitted, and the RM acti-
vates its carriers. The end result is that the RM is generating an
electromagnetic signal at its antenna port (or ports) and is also set
to receive incoming signals. We only have one user that the whole
physical downlink shared channel (PDSCH) is allocated to. Prede-
fi ned data in downlink is transmitted in an organized manner, much
like what happens during the DL test model tests. UL is prepared
to receive data in return. This is also the only point of diff erence
between TDD and FDD in the L1 Call; for TDD, we have to accommo-
date sub-frames separated in time instead of frequency.

Control
PC

SM+RM
Con guration

RF Path

ETH1

1
2

3

ETH0

Test Mobile

Figure 4 Sample UL measurement using an LTE Browser – a Nokia application which gives us an insight into what is happening on the SM.

Nokia Shaping the future of telecommunication. Check how the experts do it. 69Nokia Shaping the future of telecommunication. Check how the experts do it.68

Figure 5 Summary of PDSCH and DL signal.

Figure 6 Throughput and BLER for both uplink and downlink, including resource block assignment.
uplink shared channel (PUSCH). Ultimately, it has a major impact
on the achieved throughput. Modulation in PDSCH and PUSCH in
fact stands for a modulation order (refer to Table 7.1.7.1-1 in [4])
and is dependent on the MCS index.

• Resource blocks: RBs represent system capacity in uplink and scale
with bandwidth used. We can manually assign a non-standard
number of physical resource blocks and observe how the system
reacts to that, but most of the time, the maximum number
permitted for a given bandwidth is used (5, 10, 15, and 20 MHz use
25, 50, 75, and 100 physical resource blocks (PRBs) respectively;
1.4 MHz and 3 MHz can also be used). The number of resource
blocks utilized is also defi ned in the 3GPP specifi cation.

• UL transport block (TB) and TB size in PDCCH: Once again, it
is a 3GPP-specifi cation-defi ned value, and thus it cannot be
directly modifi ed by users; Transport Block values are calculated
based on other parameters. The same is true for several other
variables presented in Figure 6 , such as the Resource Block
Group (RGB), Downlink Control Information (DCI) format, or
Resource Indication Value (RIV).

• UE category can also be modifi ed in case we wish to emulate
a specifi c type of device and see how the DUT reacts to that.

• Note how transport block sizes for PDSCH and PUSCH directly
translate to the achieved throughputs; 15.264 Mbps in DL
and 8.76 Mbps in UL. Detailed calculations of expected
throughputs and formulas used can be found in 3GPP
specifi cations.

At this point, the test has been successfully carried out. We have
a clear indication of that on the opposite ends of the system; in
the UE and SM. There are no errors, expected throughput has been
achieved, all other attributes of the transmission are correct. DL
throughput is higher than UL because of diff erent values of the
modulation and coding scheme (MCS) used for each. This and sev-
eral other important parameters used in the whole confi guration
process are presented in Figure 7 . They need to be defi ned at the
very beginning of the L1 Call. Those parameters govern exactly how
the test is carried out, what throughputs can be expected, and if
there is a chance of errors occurring during transmission. Figure 7
presents one of the confi guration steps, where those attributes are
set for a 10-MHz bandwidth.

Figure 7 shows a Nokia application used to set up all of the param-
eters required to confi gure the System Module, Radio Module, and
Test Mobile emulator in preparation for the execution of the L1 Call
test case.

The following is a description of parameters in Figure 7 :

• MCS: It is one of the crucial parameters that govern several
characteristics of our signal such as the type of modulation used:
quadrature phase shift keying (QPSK), 16 quadrature amplitude
modulation (QAM), or 64QAM, as well as the number of transport
blocks and organization of resources in PDSCH and physical

Figure 7 One of the steps in a confi guration tool.

Nokia Shaping the future of telecommunication. Check how the experts do it. 71Nokia Shaping the future of telecommunication. Check how the experts do it.70

Our equivalent of a BTS does not have to dynamically assign MCS
and PRB values, depending on the CQI factor, which would normally
take place as users continuously change their geographic location
in relation to the BTS and face shifting interferences. Thus, we can
emulate a best case scenario. It is important because the job of our
team is not to stress-test a brand new piece of equipment but rath-
er to ensure that a Radio Module which just got off the assembly line
indeed works and does not experience any hardware faults during
a normal operational cycle. When the L1 Call is done, it is a signal for
other teams to start performing more advanced tests, optimizing
the software and fi ne-tuning a great number of other features. It
could be said that in the scope of our work, we explore some pre-
viously uncharted territories and pave the way for the rest of the
Nokia Corporation’s R&D branch to build upon that foundation.

References
[1] ISO standard 7498-1:1994
[2] Rumnay M., “LTE and the Evolution to 4G Wireless: Design and

Measurement Challenges,” Agilent Technologies, 2 edition,
March 2013.

[3] 3GPP Test Specifi cation 36 141 V12.7.0
[4] 3GPP Test Specifi cation 36 213 V12.5.0
[5] 3GPP Test Specifi cation 36 101 V12.7.0

3. Conclusion
The L1 Call may not be a particularly complicated or diffi cult test
case, but it is certainly the very fi rst one where the Radio Module
does what it was designed to do – it receives and transmits data at
the same time. The test allowed us to determine that the DUT was
able to conduct transmission without errors. We can see the actual
transmission speed, which is a more familiar value that gives us an
indication of the system’s capacity and scalability. However, due to
the fact that we are restricted to the physical layer, many simplifi ca-
tions have to be taken into consideration.

Firstly, we do not divide the PDSCH between users, which is what
would happen in a typical commercial implementation. This elim-
inates a signifi cant element of complexity, where we do not have
to worry about arranging resources in a unique way for each user.
Secondly, the Channel Quality Indicator (CQI) is a redundant con-
cept for us because we utilize perfect conditions throughout the
entirety of our radio path. We even force the hybrid automatic
repeat request (HARQ) not to use any retransmission via a spe-
cial scripting in SM software. Because of that, any problems with
BLERs we typically experience are likely as a result of a faulty con-
nector, a synchronization cable loose in its socket, or an occasion-
al fault in software.

About the author

I am a graduate of Electronics and Telecommunications
faculty of Wrocław University of Technology. I work
as an engineer in the MBB RF Hardware Integration
and Verifi cation team. Our branch of Nokia’s R&D is
concerned with hardware tests of prototype radio
and system modules and preparation of confi guration
scripts for other teams. Our tasks revolve around
green-lighting new equipment as it emerges from
Nokia’s assembly lines, and we are at the forefront of
hardware and software fault detection and evaluation.

Marek Salata
Engineer, Hardware Integration
MBB Radio Frequency

Nokia Shaping the future of telecommunication. Check how the experts do it. 73Nokia Shaping the future of telecommunication. Check how the experts do it.7272

Telecommunication System Engineering

Digital Linearization
of RF Transmitters

 Krzysztof Kościuszkiewicz
Software Architect
MBB Radio Frequency

Karol Sydor
Software Development Engineer
MBB Radio Frequency

1. Introduction to RF transmitters
Energy effi ciency is one of the key design goals in RF telecommuni-
cations systems, both in handsets and base stations. In handsets,
it directly aff ects the battery life and hence the end-user expe-
rience. On the BTS end, higher energy effi ciency is coupled with
equipment size, cooling methods, achievable transmitter power,
and operating costs by the network operator. In fact, up to 80% of
energy consumption in the BTS can be attributed to the RF trans-
mitter. Therefore, even small improvements in the transmitter ef-
fi ciency will impact energy costs, achievable throughput/cell size,
and other related aspects. To put things in perspective – 6TX 40 W
Nokia Flexi Radio consumes ca. 16.5 kWh per day with rated ETSI
102 706 traffi c load model. With transmitter effi ciency at 38%,
even a 1 percentage point increase translates into a 2% decrease
in energy costs across the whole network.

Modern cellular technologies are based on wideband signals with
a high dynamic range. This, in turn, requires the usage of high-
ly linear transmitters to amplify the signal without signifi cant
degradation in its quality. It is in the transmitter design where

linearity requirements and effi ciency of the BTS are determined.
As it is often encountered in engineering, one goal opposes the
other and it is a real challenge to design an effi cient and linear RF
amplifi er.

Figure 1 illustrates the typical amplitude and phase nonlinearities
of a 40 W Doherty Power Amplifi er (PA) [1]. With a 6.7 dB peak to av-
erage rate (PAR), the PA needs to handle up to 187W signal peaks to
transmit with an average power of 40 W. The linearity of the PA can
be easily improved by shifting its operating point to the left. This is
equivalent to overdesigning the device – 6 dB back-off in the oper-
ating point is equivalent to the reduction of the average PA power
from 40 W to only 10 W, and a sharp drop in effi ciency – from 38% to
23% in this example.

2. Analog linearization systems
One strategy devised to have both high linearity and high effi ciency
was to implement a system where transmitter nonlinearity is es-
timated and corrected automatically. Let us briefl y review analog
linearization solutions implemented in the past.

 Figure 1 Single tone gain and phase PA characteristics.

Ph
as

e
[d

eg
]

G
ai

n
[d

B]

Gain [dB]

Pin/Pnom [dB]

Phase [deg]

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

5

4

3

2

1

0

-1

-2

-3

-4

-5
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

operating range (PAR)
at nominal power

nominal power

Nokia Shaping the future of telecommunication. Check how the experts do it. 75Nokia Shaping the future of telecommunication. Check how the experts do it.74

Figure 2 Analog closed loop linearization system.

Figure 3 Analog feedforward linearization system.

I-Channel
Input

Differential
Amplifiers/

Loop
Integrators

Baseband
Op-amps

Phase
-shift RF PA

Attenuator

Channel
Synthesiser

RF
Output

Q-Channel
Input

In
90˚

0˚

In
90˚

0˚

∫dt
+
-

∫dt
+
-

Loop 1
Carrier

Cancellation

Delay

Delay

Control
network

Control
network

A,

A,

Loop 2
Distortion

Cancellation

Error
Amplifier

Main
Amplifier

In the most common approach, the identifi cation process is based
on mathematical modeling. Using the Volterra theory [2] it is possi-
ble to describe non-linear behavior of the PA by using a linear com-
bination of coeffi cients, and non-linear functions called the Volterra
kernels. Software processing can extract the non-linear Volterra
model in a direct manner by using the least squares linear system
identifi cation algorithm [2].

There are two main realizations of the above described predistor-
tion approach. Depending on the requirements and available re-
sources, a suitable solution can be selected. The fi rst approach is
the Direct Learning Approach (DLA), with its system diagram depict-
ed in Figure 5 below.

In this approach, the nonlinear PA model (NL) is identifi ed by esti-
mating the coeffi cients of Volterra-kernels. Basing on that, the in-
direct model (NL) is created and applied to the transmit signal. The
main benefi t of this approach is that the bandwidth of the PA model
is dependent only on the sampling rate in the transmit pipe, and not
the feedback path. Undersampled, real-only feedback path can be
used and this reduces the overall system cost. The main disadvan-
tage of this method is that a direct PA model is identifi ed, while the
inverse model is needed for predistortion. This implies the need for
inverting the numerically complex model.

There are two possible solutions for this issue. One is numerically
calculated inversion. Since the PA-model consists of higher order
non linear functions and high levels of memory, numerical inversion
is a complex procedure requiring a high amount of processing pow-
er. The second solution is to use the iterative approach. This meth-
od can be accelerated by using a dedicated hardware solution, which
supports several iteration processing. This eliminates the need for
software based inversion and reduces the processing time.

Figure 5 System diagram of Direct Learning Approach.

Figure 4 Principle of linearization with digital predistortion.

In the fi rst approaches (Figure 2), nonlinearity was corrected di-
rectly via the closed analog loop feedback system where corrections
were estimated and applied directly to the in phase and quadrature
signals before the upconversion. A linearity improvement up to 35
dB was achievable in similar systems, but the linearization band-
width was limited up to about 1 MHz by the feedback bandwidth and
time response characteristics.

The Design of a so-called “feedforward” linearization is illustrat-
ed in Figure 3 . In theory, they could achieve a high bandwidth
and up to a 20–30 dB ACLR improvement. But, it should be noted
that both the error amplifi er and the top right delay component
must operate at a nominal RF power of the unit. This resulted
in a high power dissipation and physically large components re-
quired to implement such solutions, limiting the achievable effi -
ciency to 15–20%.

3. Digital predistortion
Limitations of the analog solutions could be side-stepped with
a digital realization of the linearization systems. This became prac-
tical with high bandwidth analog-to-digital converters (ADC) used
in feedback loops and high speed digital system processing (DSP)
realizations. Digital Predistortion (DPD) is the most common tech-
nique of PA linearization in the digital domain. Its principle has been
illustrated in Figure 4 .

The linearization is achieved by the composition of the PA and the
Predistorter characteristics. In general, DPD consists of two main
blocks – the predistorter and the identifi cation block. Predistort-
er applies the inversed behavioral model of the RF Amplifi er to the
downlink signal samples. It can be realized by a DSP processor, or
a dedicated HW block. The identifi cation block is responsible for
the estimation of the behavioral PA model parameters. This block
requires hardware support for signal capturing, and the remaining
part can be realized in diff erent ways, depending on the used archi-
tecture.

VoVo,PA

Vo,PA

Vi,PA Vi,PA Vi

Vo,PD Vo

Vi, PAVo,PDVi,PDVi

Input Output

RF AmplifierPredistorter

+ =

NL

+

PA

Coefficient
estimation

NL-1

Nokia Shaping the future of telecommunication. Check how the experts do it. 77Nokia Shaping the future of telecommunication. Check how the experts do it.76

distorter in the same form (without any need of recalculation). This
system does not need PA model inversion, and provides a similar
performance as the DLA approach. The disadvantage of this meth-
od is that the bandwidth of the system is dependent on the sam-
pling rate of the feedback path. This requires complex, high speed
feedback and therefore results in a higher total cost of the system.
This approach will be used in next generation Nokia Radio Modules
because it requires a simpler predistorter (iterative inversion is not
used, so HW capable of performing single iteration is enough to ful-
fi ll the signal processing needs).

The Nokia DPD solution is using hardware solutions with software
based model calculation and validation. The parts which require re-
al-time interaction with downlink signals are handled by the hard-
ware. This includes the predistorter, and the parameter estimation
block with a capture unit, identifi cation block, and correlator. Soft-
ware is responsible for the Volterra kernels coeffi cient calculation,
the creation of the PA model, and validation. This approach is used
in all in-house Nokia HW with integrated DPD blocks.

4. A history of DPD in Nokia
From a historical perspective, DPD has evolved altogether with oth-
er parts of Nokia BTS systems. The fi rst digital predistortion de-
ployed in Nokia BTS was based on neural networks. The predistorter
was build up from two parallel networks, one for amplitude and one
for phase compensation. Networks were initially trained to provide
a zero function (no signal modifi cation). The neural network train-
ing algorithm was minimizing the residual error between the original
and feedback signal. This solution performed very well when com-
pared with analog methods like feedforward used in similar systems
at that time. However, growing demands for higher bandwidth re-
sulted in this approach not being suitable as it could be used for
systems capable of handling single WCDMA carriers.

A performance comparison of diff erent methods showed that mod-
els with a function based predistorter with an inversed PA model
perform better. In the next generation DPD, the predistorter was
able to apply several polynomial functions over state variables com-
posed from amplitude, phase, and their derivatives. The coeffi cients
were selected based on diff erent schemes. One scheme was based
on signal parameter measurements. Several predistortion qual-
ity criteria were calculated (ACLR, EVM etc.) and coeffi cients were
selected based on some predefi ned relationship between certain
measurement and coeffi cient values. Other schemes were based
on FFT measurements and coeffi cient scanning to obtain optimum
values. In general, the system was too complex, required factory
calibration, and in fi eld additional parameter tuning and storage.
This solution gave the performance needed to linearize 2 WCDMA
carriers with ACLR up to -60dBc.

The next step in DPD was the fi rst iiDapd system, designed to fi t into
multiradio supporting 20MHz of bandwidth and support of WCDMA

The iterative inversion approach is using the fi xed point method to
approximate the inverted PA model iteratively, by using the unity
gain as the fi xed point. This requires the PA model to be normalized
in a way that ensures that most of signal samples will pass through
the predistorter without gain change. The PA model is normalized by
the software by numerical factor based on its raw gain for nominal
power. The fi xed point method ensures that after several iterations
(desired performance can be achieved after 4 iterations) the error
of the approximation converges to zero. This means that the iter-
atively approximated inverse model behaves as the desired inverse
PA model.

One of the disadvantages of the fi xed point method is the decreas-
ing accuracy of inversion for parts of the PA model which are fur-
ther away from the nominal operating point on the gain and phase.
With linear convergence further improvements would require costly
additions of more iterations in the accelerator. This can be limited
by adding Convergence Accelerator to the predistorter processing
path – a non linear function which extracts the gain curve from the
remaining part of the PA model. This makes the iteratively inversed
part of the PA model gain more fl at in power domain, and enables
to cover even more gain correction in the predistorter and still keep
close to the fi xed point.

This method is widely used in currently produced Nokia Radio Mod-
ules, known as iiDapd (fi rst release of iiDapd did not contain a con-
vergence accelerator).

Another approach to the DPD is the Indirect Learning Approach (ILA)
– Figure 6 .

Figure 6 System diagram of the Indirect Learning Approach.

In this approach, a so-called “training” model is introduced (invNL).
The parameters of the training model converge with the inverse
nonlinear system, and can be used in identifi cation and in the pre-

+

PA

Coefficient
estimation

invNL

invNL

predistorter complexity – single iteration of iiDapd predistorter is
enough for the ILA algorithm to provide similar performance. To-
gether with a verifi ed concept of shared feedback, it allows to sup-
port more linearization paths with a single chip.

The target for next generation solutions is to support more lineari-
zation paths within one chip, less power consumption, less external
components, and higher bandwidth. For comparison, one of the fi rst
systems with digital predistortion required a dedicated DPD chip to
linearize 1 or 2 WCDMA carriers. The currently available radio mod-
ules contain 2 DPD paths in a single chip together with a dedicat-
ed ARM core for DPD routines and only 1 feedback path, providing
80MHz of bandwidth capable to run LTE, GSM, and WCDMA carriers.

References
[1] A new high effi ciency power amplifi er for modulated waves.

William H. Doherty, Proceedings of the Institute of Radio Engi-
neers, Vol. 24, No. 9, 1163-1182, Sept. 1936

[2] Theor y of Functionals and of Integrals and Integro-Diff erential
Equations. Vito Volterra. New York: Dover Publications, 1959.

[3] Digital predistortion of power amplifi ers using look-up table
method with memory eff ects for LTE wireless systems. Ruchi
Singla and Sanjay Sharma EURASIP Journal on Wireless Commu-
nications and Networking 2012:330 http://jwcn.eurasipjournals.
com/content/2012/1/330

or LTE carriers. It was a 4 iteration iiDapd. It was a huge step for-
ward compared to previous solutions – the algorithm was converg-
ing from a constant starting point, so the factory calibration was
no longer needed. Also, since the identifi cation block was hardware
based, the software was simplifi ed, eliminating the need of quali-
ty indicator measurements. The fi rst version of iiDapd was a more
cost-eff ective, faster, and stable solution with a performance at
about -73 dBc for WCDMA carriers.

The iiDapd system was improved over time. At fi rst, the PA model
memory modeling capabilities have been improved by making the
predistorter able to handle a greater number of non-linear func-
tions. Together with this feature, GSM support was introduced with
its large number of previously unknown problems related to dynam-
ic signals. Later on, the Convergence Accelerator block was intro-
duced, giving the ability to support up to a 60 MHz bandwidth.

Newer solutions using iiDapd have focused more on cost reduction.
The number of iterations was reduced from 4 to 3. The whole sys-
tem has been fi tted into a single chip together with a dedicated pro-
cessor core, 2 linearization paths, and one shared feedback.

The currently developed projects will be the fi rst to use ILA instead
of iiDapd. The reason for this is further cost reduction. The ILA
method needs a complex full speed feedback ADC, but reduces the

About the authors

My journey in Nokia began as an Embedded Software
Developer for the RF module where I became part of
the team responsible for development of the iiDAPD
SW. Today my daily work revolves around architecture
and design of the software for next generation radio
modules. Together with the specifi cation team we
try to address the challenges of future BTS solutions,
including Cloud concepts, active antenna systems,
indoor pico BTS, and 5G technology.

Krzysztof Kościuszkiewicz
Software Architect
MBB Radio Frequency

I work as a Software Development Engineer in
MBB RF RFSW team. In our organization we develop
software for Nokia radio modules. In our daily work
we are challenged by the encounter of analog radio
elements and high speed digital processing. Constant
evolution of the systems and the search for better
solutions is the driving force behind our professional
development. In our work technology is not only
a tool, but also a goal.

Karol Sydor
Software Development Engineer
MBB Radio Frequency

Nokia Shaping the future of telecommunication. Check how the experts do it. 79Nokia Shaping the future of telecommunication. Check how the experts do it.78 7978

 Professional
Software
Development

Sławomir Zborowski
C++17 – the Upcoming Standard

80

3.1

Michał Bartkowiak
Beginning the Adventure:
Writing a Minimal Compiler

112

3.5

Krzysztof Bulwiński
Make It Simple: Java Generics

88

Bartosz Kwaśniewski
Functional Reactive Programming
Paradigm in JavaScript

96

3.2 3.3
Bartosz Woronicz
Python: A General-purpose Language
with a Low-level Entry Barrier

104

Krzysztof Garczyński and Piotr Rotter
U-Boot: How Linux is Loaded
on Embedded Systems

120

Łukasz Grządko
Tuning the Algorithms for Bin Packing
Problem

126

3.4

3.6 3.7

Nokia Shaping the future of telecommunication. Check how the experts do it. 81Nokia Shaping the future of telecommunication. Check how the experts do it.8080

Professional Software Development

 Sławomir Zborowski
Engineer, Software Development C++
MBB Single RAN

C++17 – the Upcoming Standard

1. Intro
Some say that C++ is going to die in the coming years. Nothing fur-
ther from the truth! After revolutionary changes in C++11 and minor
improvements in C++14 the language is heading towards the next
major release – C++17.

It is the middle of 2015 when this article is being written but it is
already known that C++17 will be a similar game changer as C++11
once was. This time, besides long-awaited features like concepts
and ranges, C++ is going to catch up with competing languages in
terms of standard library completeness.

The number of proposals submitted to be included in C++17 is high.
They include a variety of features like parallel execution or com-
pile time refl ection. This article focuses only on selected language
proposals, which are likely to be included in C++17 and will provide
powerful tools to C++ programmers. However, since the author is
not clairvoyant, please bear in mind that the actual C++17 may look
slightly or even completely diff erent than the one presented here.

2. Concepts
C++ templates often operate on types that should meet some re-
quirements. Good example is a template function fi llMemory that
accepts type T and fi lls the memory region it occupies with some
value. This function should obviously check input type’s traits – the
most important is whether the type is trivially copyable (e.g. POD
object). If it is not, bad things can happen (e.g. virtual dispatch table
can be overridden with garbage). To check whether the type is POD
or not, one can simply use template std::is_pod, which is shipped
with type_traits library. However, not every template is that simple.
In case of complex template functions and classes there are a lot of
checks like this to be performed. Unfortunately, there is no readable
way to specify type requirements. Also, what is more important to
library end-users, in case of type not fulfi lling some requirements
a compiler error can look like a damaged XML document. Essentially,
concepts are meant to address these two issues.

With concepts, the library writer will be able to easily specify require-
ments for a particular type and the compiler will be able to produce
a clear error message if the user makes a mistake.

Listing 1 illustrates what the process of creating a simple concept
and using it will probably look like. Of course concepts off er greater
power for real-world libraries. It is highly probable that STL will be
the fi rst one to benefi t from concepts. Unfortunately, real-world ex-
amples would be too lengthy to be included here.

Listing 1 Example depicting how simple usage of C++ concept could
look like

template<typename T>
constexpr bool Addable()
{
 return requires (T a, T b) {
 // Result of expression { a + b } have to be of type T.
 {a + b} -> T;
 };
}

// Note there is no typename/class but Addable directly.
template <Addable T>
T add(T a, T b)
{
 return a + b;
}

3. Ranges
STL library can be viewed as a group of sub-libraries. Besides the
likes of regex, threads, or atomics, there are ones that were part of
STL from the very beginning: algorithms, containers, and iterators,
respectively. Taking only these three into account, it is possible to
treat iterators as a glue between algorithms and containers. C++
programmers are used to this design, but they often complain that
it leads to cumbersome and inconvenient usage in some cases. That
was one of the reasons for which a new approach was proposed –
ranges, in a paper N4382 [4].

Conceptually, ranges can be viewed as a pair of iterators, but imple-
mentations can be based on length to provide better performance. It
is possible to extract begin and end iterators from a range. Listing 2
shows the simplicity achieved with ranges library.

Listing 2 Example usage of ranges library. [5]

// Traditional way
std::vector v { /* ... */ };
std::sort(std::begin(v), std::end(v));

// Ranges-based way
std::vector v { /* ... */ };
ranges::sort(v);

The range library is going to provide overloads for all standard al-
gorithms for convenience. Another important benefi t of using rang-
es is that it reduces the risk of making a mistake like, for example,

Nokia Shaping the future of telecommunication. Check how the experts do it. 83Nokia Shaping the future of telecommunication. Check how the experts do it.82

Table 1 Classes provided by the fi lesystem library.

Class name Purpose

path

Represents a path to fi le system entity.
Contains pathname which can be invalid
for external storage or operating system.
Takes care of separators. Makes it easy to
perform modifi cations like fi lename/fi le
extension change and provides iterators
for path traversal.

fi lesystem_error

Symbolizes an error that occurred during
fi le system operation. Among other
information it contains error message and
optional paths related to the error.

fi le_status Represents type and permissions of a fi le.

directory_entry Stores a path object, which belongs to
some directory.

directory_iterator Input iterator allowing to iterate over enti-
ties stored in a directory.

recursive_directory_iterator Same as directory_iterator, but iteration
takes into account subdirectories.

Table 2 Enumerations provided by the fi lesystem library.

Enumeration Description

fi le_type

Represents type of a fi le. Value equal to
one of: none, not_found, regular, directo-
ry, symlink, block, character, fi fo, socket,
unknown.

copy_options

Enumeration used to specify bitmask
which controls the copy process. These
options are utilized in multiple situations
like existence of target fi le or occurrence
of symbolic links.

perms
Contains values used to create bitmask
representing fi le permissions, like in
POSIX-compilant operating system.

directory_options Defi nes options used to control directory
traversal.

passing two iterators initialized with diff erent containers into one
algorithm expecting two iterators for the same container.

Yet another useful novelty that ranges library bring is views. They can
be viewed as ranges that represent a lightweight view of an underlying
sequence. This kind of view is cheap to copy and does not take owner-
ship of elements from the container. With views it is possible to easily
pipeline mutations and apply actions in a way that resembles function-
al programming. The following example code fragments from ranges’
library documentation illustrate the power behind views concept.

Listing 3 Example usage of views from ranges library. [5]

// Example: convert vector of integers to a view with
// even numbers represented as strings.
std::vector<int> vi{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
using namespace ranges;
auto rng = vi | view::remove_if([](int i){return i % 2 == 1;})
 | view::transform([](int i){return std::to_string(i);});
// rng == {"2", "4", "6", "8", "10"};

// Example: Sum up first ten squares of integers.
using namespace ranges;
int sum = accumulate(view::ints(1)
 | view::transform([](int i){return i*i;})
 | view::take(10), 0);

Undoubtedly, ranges are an enhancement worth waiting for. Yet,
they are not going to completely replace iterators. Iterators will still
be used to represent, for example, a single point in a sequence.

4. Filesystem
C++ allows the programmer to interact with multiple system re-
sources, like CPU, RAM, or I/O devices. However, there is one re-
source that is not covered by the language – fi le system.

Nowadays it is hard to imagine an application that does not use a fi le
system at all. It was observed that this kind of library would make
a meaningful and desired functionality if it was available in C++. The
aim of paper N4100 [3] is to introduce a fi le system library/support
to the C++ language. Unsurprisingly, it is based on Boost.Filesystem.
File systems are old and well known so the library itself does not
contain any pieces that would be surprising. The library exports
functions, classes, and enumerations that allow the programmer
to eff ectively utilize fi le system resources like fi les, directories and
so on. Exported classes and enumerations are briefl y described in
Tables 1 and 2 , respectively. The rest of exported interface con-
sists of free functions used to perform concrete actions like direc-
tory creation or fi le permissions inquiry.

network frameworks. With C++ it is diff erent and programmers are
forced to seek for a framework that would match their needs, be
portable across operating systems etc. One of such frameworks is
Boost.Asio (Asynchronous I/O). It is very likely to be a part of the C++
library from C++17 onwards, according to current status of proposal
N4478 [2]. That would make C++ a network-aware language which is
what many C++ programmers are waiting for.

Diff erences between networking library for C++17 and Boost.Asio
are negligible, so it is possible to see what coping with a network
would look like simply by using Boost.Asio. Listing 5 illustrates
a simple “Hello, world!” HTTP application.

Listing 5 Example HTTP “Hello, world!” application.

#include <iostream>
#include <asio/ts/internet.hpp>

using asio::ip::tcp;
using namespace std;

int main()
{
 asio::ip::tcp::iostream s;
 auto host = "example.com";

 s.connect(host, "http");
 if (!s)
 {
 cout << "Unable to connect: " << s.error().message()
 << endl;
 return 1;
 }

 s << "GET / HTTP/1.0" << endl
 << "Host: " << host << endl
 << "Accept: */*" << endl
 << "Connection: close" << endl << endl;

 string response;
 getline(s, response);

 cout << "Response: " << response << endl;
}

Because the library is integrated with C++ streams it is extremely
easy to send and receive data over the network. However, in the
example shown above it happens in a synchronous fashion. Usually,
this is not the approach used by applications that are meant to be

Example usage of new fi lesystem library might look as presented
below.

Listing 4 Example use of filesystem library.

#include <iostream>
#include <unordered_set>
#include <filesystem>

using namespace std;
using namespace filesystem;

int main()
{
 unordered_set<string> excludes = {
 "doc", "docs", "html"
 };

 recursive_directory_iterator dir(path(".")), end;
 while (dir != end)
 {
 auto path = dir->path();
 if (excludes.count(path.filename().string()))
 {
 dir.no_push(); // don't go inside
 }

 cout << dir->path().string() << endl;
 ++dir;
 }
}

It is clear that the new fi le system library, which is going to be a part
of the standard C++ library, will enable programmers to cope with
fi le system entities in an eff ective fashion. Based on the proposal
paper one can say that the library is complete in terms of function-
ality. There is no doubt this is another big thing that a lot of develop-
ers are waiting for. It will positively change the C++ landscape.

5. Network
A few decades ago, when C++ emerged, most applications were de-
signed to run on a single machine, utilizing its resources like one CPU
core, some RAM memory, and a hard disk. A lot of things have radical-
ly changed ever since. Today, many applications are network-based
and operate on virtualized hardware in the so-called clouds.

Writing this kind of applications requires programmers to cope
with a network in some way. In popular languages other than C++ it
was pretty easy because their standard libraries were shipped with

Nokia Shaping the future of telecommunication. Check how the experts do it. 85Nokia Shaping the future of telecommunication. Check how the experts do it.84

private:
 udp::socket socket_;
 udp::endpoint sender_endpoint_;
 static constexpr short max_length = 1024;
 char data_[max_length];
};

int main()
{
 auto constexpr port = 4321;

 asio::io_context io_context;
 server s(io_context, port);
 io_context.run();
}

Implementation behind asynchronous interface utilizes well-known
proactor design pattern, which has been named “executor” in the
proposal.

6. Modules
The C++ language inherited lots of concepts and design ideas from
its predecessor – the eternal C. One of the most fundamental and
meaningful one is the system of independent compilation which, in
essence, was about merging of multiple isolated translation units into
one object fi le. Such object fi les are then subject of further process-
ing. Translation units usually consist of multiple header fi les and one
source fi le. This kind of design has some benefi ts like eff ectiveness,
for instance, but suff ers in other dimensions, like the following:

• Consistency between translation units is hard to maintain both
for the programmer and the compiler (e.g. it is relatively easy to
break One Defi nition Rule (ODR) without even knowing about it).

• The compiler has to do the dirty job of parsing header fi le
content over and over again each time it is included in some
translation unit and that results in a performance loss.

• IDEs have trouble understanding the code and helping the
programmer, because as small things as preprocessor directives
can radically change a lot of things.

The programming community has developed several techniques of
mitigating some of those problems, but the solutions usually aff ect
compilation or run-time performance (e.g pimpl idiom). Fortunately,
the need for a clever approach has recently materialized in the form
of standard proposal N4214 [1].

The proposal indicates very clearly that it would be too overwhelm-
ing to completely remove the preprocessor from C++ ecosystem.
Therefore, the modules will live in one room with the preprocessor
for some time. It was also observed that in C++ there are already
seven scoping abstractions, so the authors have decided that mod-
ule statement would not introduce a new scope.

blazingly fast because each network operation blocks the running
thread. This, in turn, results in poor performance. Fortunately, the
library provides asynchronous methods as well (Listing 6). The only
visible drawback of this method is decreased readability.

Listing 6 Example UDP echo server.

#include <iostream>
#include <asio/ts/buffer.hpp>
#include <asio/ts/internet.hpp>

using asio::ip::udp;
using namespace std;

class server
{
public:
 server(asio::io_context & io_context, short port)
 : socket_(io_context, udp::endpoint(udp::v4(), port))
 {
 do_receive();
 }
private:
 void do_receive()
 {
 socket_.async_receive_from(
 asio::buffer(data_, max_length), sender_endpoint_,
 [this](error_code ec, size_t bytes_recvd)
 {
 if (!ec && bytes_recvd > 0)
 {
 do_send(bytes_recvd);
 }
 else
 {
 do_receive();
 }
 });
 }

 void do_send(size_t length)
 {
 socket_.async_send_to(
 asio::buffer(data_, length), sender_endpoint_,
 [this](error_code, size_t)
 {
 do_receive();
 });
 }

Importing of objects exported by other modules is illustrated in
Listing 8.

Listing 8 Example of importing objects exported by the modules. [1]

import std.vector; // #include <vector>
import std.string; // #include <string>
import std.iostream; // #include <iostream>
import std.iterator; // #include <iterator>
int main() {
 using namespace std;
 vector<string> v = {
 "Socrates", "Plato", "Descartes", "Kant", "Bacon"
 };
 copy(begin(v), end(v), ostream_iterator<string>(cout, "\n"));
}

Those changes may seem simple and meaningless, but they will in
fact enable programmers to work with huge C++ projects in a more
eff ective fashion, the main reason being higher compilation speeds
and tailored build frameworks. If the module system is included in
C++17, it will surely be a real game changer.

7. Summary
More and more things are continuously becoming part of the C++
language, leaving less space for operating systems and third party
libraries. Unless there is a library tailored for developing concrete
solutions, this looks like a good direction.

C++ is defi nitely catching up after its competitors. With brand new
libraries like the ones presented in the article programmers will be
able to quickly write applications that utilize all the resources that
a modern application has to utilize (like network). Some other li-
braries and language features will make life easier and allow writing
a code in a more functional way.

There is no doubt that C++17 will change the way people perceive
C++ as a language. This renewed language will defi nitely be more
attractive than it is now.

References
[1] ht tp: //w w w.open-std.org /JTC1/SC22/ WG21/doc s/pa-

pers/2014/n4214.pdf
[2] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

n4478.html
[3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/

n4100.pdf
[4] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

n4382.pdf
[5] https://ericniebler.github.io/range-v3/

In essence, the module system is about one unit exporting things
inside a module that can be then imported by some other unit (pos-
sibly from another module). That is illustrated in Listing 7.

Listing 7 Example implementations utilizing module system.

// M1_interface.cpp
module M1;

export {
 class Foo { /*...*/ };
 class Bar { /*...*/ };
 // ...
}

// M1_impl_foo.cpp
module M1;

int Foo::foo() {
 // impl.
}

// M1_impl_bar.cpp
module M1;

int Bar::bar() {
 // impl.
}

// M2_interface.cpp
module M2;

export {
 class Baz { /*...*/ };
 // ...
}

The module system will provide easy componentization and separa-
tion. It will coexist with header fi les but will allow mitigating of their
usage in C++ applications. There are three keywords to be associat-
ed with the module system:

• Module – used to indicate to which module a given translation
unit belongs

• Export – used to specify declarations that should be exported
from the module

• Import – used to import the entity exported within another module

Nokia Shaping the future of telecommunication. Check how the experts do it. 87Nokia Shaping the future of telecommunication. Check how the experts do it.86

About the author

I am a Software Engineer with years of experience.
I started my adventure with computers at the age
of 12 with Commodore64 as a friend. Several years
ago I joined the community that try to master
C++ language.
My leisure time is almost indistinguishable from
offi ce hours. I am interested in novelties in computer
science, algorithms, distributed systems,
programming languages, etc.

Sławomir Zborowski
Engineer, Software Development C++
MBB Single RAN

Nokia Shaping the future of telecommunication. Check how the experts do it. 89Nokia Shaping the future of telecommunication. Check how the experts do it.8888

Professional Software Development

 Krzysztof Bulwiński
Software Engineer
MBB CEM & OSS

Make It Simple: Java Generics

Introduction
A generics mechanism was introduced with Release 5 of Java
Standard Edition (JSE), and since then it has become one of the key
components in the language syntax. It is probably safe to say that
every Java programmer must have encountered it at some point
along his coding path. A good example here may be a parameter-
ized collection.

Despite the fact that there is a lot of information out there, some de-
velopers do not understand the meaning and implications of Java ge-
nerics. This paper discusses the concept of Java generics in the sim-
plest possible way; it is an attempt to create an easy to understand
guide for developers who might fi nd generics somewhat confusing.

In software projects, a bug occurrence is an obvious fact. It is true
that thorough programming and testing reduces the probability of
faults, but the golden principle of testing states that there is no way
to test everything. Therefore, bugs will somehow always fi nd their
way to crawl into the production code. This becomes more and more
evident as the project grows.

Compile time bugs can be detected at a very early stage. The com-
piler comes in very handy here. Runtime bugs, on the other hand,
are much more problematic as they are not so easy to notice.

Generics introduces stability to the development code by eliminat-
ing some of the bugs right at the compile time. To simplify matters,
all imports and almost all access modifi ers in the code snippets are
omitted as they are not required to understand the examples. On
the other hand, they may unintentionally obscure the whole picture.
The code snippets presented throughout this paper are based on
Java SE 8.

1. Motivation behind the generics
As mentioned above, the generics mechanism was unknown before
Release 5 of Java. Thus, it may bring up questions about what prob-
lems it caused and how developers managed to overcome them. To
take a closer look at the issue, let us consider two distinct objects in
Java terms, a dog and a car, for instance. In the Java world, they can
be modeled by means of two classes as follows:

Listing 1.1

class Dog
{
 void makeSound()
 {
 System.out.println("Dog barks.");
 }
}

class Car
{
 void drive()
 {
 System.out.println("Car drives.");
 }
}

Now, let those objects be added to the collection as follows:

Listing 1.2

void putDogCarToCollection(Collection items)
{
 items.add(new Dog());
 items.add(new Car());
}

It may be noticed that the collection can be fi lled with a variety of
objects that have nothing in common from an implementation point
of view. Now, let us attempt to read the objects from the collection
as follows:

Listing 1.3

void fetchDogCarFromCollectionDoAction(Collection items)
{
 //Collections items treated as java.lang.Object.
 for (Object item : items)
 {
 //Type checking required
 //to cast objects safely.
 if (item instanceof Dog)
 {
 Dog dog = (Dog) item;
 dog.makeSound();
 }
 else if (item instanceof Car)
 {
 Car car = (Car) item;
 car.drive();
 }
 }
}

The code to be tested as a whole is as follows:

Nokia Shaping the future of telecommunication. Check how the experts do it. 91Nokia Shaping the future of telecommunication. Check how the experts do it.90

Generally speaking, type variables play the role of parameters
and deliver information to the compiler that there is a need to
perform type checking. An example of a generic class declaration
begins with a class name, followed by a capital letter T closed
in angle brackets. Generic methods will be explained in greater
detail below.

Listing 2.1

class GenericClass<T>
{
 private T item;

 //Getter and setter methods omitted.
 public static void main(String[] args)
 {
 GenericClass<Dog> dogGeneric = new GenericClass<>();
 dogGeneric.setItem(new Dog());
 Dog dog = dogGeneric.getItem();
 dog.makeSound();
 }
}

It may be noticed that the main method has no type checking,
i.e. no instanceof operator used. Additionally, there is no object
casting; therefore, the fear of a class cast exception may be mit-
igated here. An example of a generic interface declaration begins
with an interface name, followed by a capital letter T closed in
angle brackets.

Listing 2.2

public interface GenericInterface<T>
{
 T getItem();
 void setItem(T item);
}

Many items in the Java Application Programming Interface (API),
such as the entire collections framework, are adjusted to utilize ge-
nerics extensively. A good example to confi rm that is the java.lang.
Comparable interface. As a result, code snippets presented in sec-
tion 1 can easily be modifi ed to use generics.

Adding items to the collection:

Listing 1.4

void runIt()
{
 Collection items = new ArrayList();

 putDogCarToCollection(items);
 fetchDogCarFromCollectionDoAction(items);
}

What is the actual issue in the example presented above? In List-
ing 1.2, everything appears to be unproblematic; it is a simple op-
eration of adding a variety of objects to the collection, nothing
out of the ordinary. The issue reveals itself in Listing 1.3, when
implementing a for-each loop. All objects fetched from the collec-
tion are treated as java.lang.Object. Therefore, in order to be able
to invoke methods of a specifi c type, they must be transformed
beforehand to become specifi c objects again. In reality, it is done
by telling the compiler that the object we are dealing with is of
a specifi c type, which is achieved by a casting operation. Howev-
er, unless it is performed carefully, Java may throw a java.lang.
ClassCastException exception. Therefore, to perform the opera-
tion safely, an instanceof operator must be utilized together with
an if clause. When dealing with a small number of types, this is not
much trouble, but adding a great number and variety of object
types introduces unnecessary chaos in the code (instanceof’s and
if’s) as well as in the logical understanding of such a structure.
Furthermore, it becomes hard to maintain and debug. Typically,
collections are intended to store items of one type for the obvi-
ous reason of making the code clean and logically cohesive.

To take the burden of keeping the type right off the developer, there
comes the generics feature. It off ers the confi dence that the object
added and fetched to and from the collection is of a specifi c type.
It is the compiler that keeps track of the type that is to be put into
the collection. How it is done in practice will be explained in greater
detail in the remainder of this paper.

2. Generics as a type variable
Generics introduces the concept of a type variable, which, in other
words, is an unqualifi ed identifi er introduced by:

• generic class and interface
• generic methods and constructors

2.1. Generic class and interface declaration
A class or an interface is a generic type if it is parameterized over
types; in other words, if it has one or more type variable(s). In the
language syntax, a variable type is delimited by angle (<>) brackets
following the class or interface name.

Listing 2.5

void runIt()
{
 Collection<Dog> dogItems = new ArrayList<>();
 putDogToCollection(dogItems);
 fetchDogFromCollectionDoAction(dogItems);

 Collection<Car> carItems = new ArrayList<>();
 putCarToCollection(carItems);
 fetchCarFromCollectionDoAction(carItems);
}

In the current situation, the code will simply not compile when there
is an attempt to put a car object into the collection of dogs and
vice versa. It may be noticed that adding and fetching objects to
and from the collection introduced a logical separation based on
a particular object type. This, as a matter of fact, is a positive occur-
rence. It is worth noting how signifi cantly the source code has been
simplifi ed; now, essentially each method deals only with one type of
object. What is more, neither casting nor an explicit type checking
is required.

2.2. Generic methods and constructors declaration
This section provides a detailed description of how to utilize gener-
ics with respect to methods and constructors.

2.2.1. Generic methods
A given method becomes generic if it declares one or more type
variables:

Listing 2.6

public <T> T getFirstItem(List<T> items)
{
 //Method parameter treated normally.
 if (items == null || items.isEmpty())
 {
 return null;
 }
 else
 {
 //Fetching first element of the collection.
 //Type is not interesting at the moment.
 return items.get(0);
 }
}

Listing 2.3

void putDogToCollection(Collection<Dog> items)
{
 //Only dogs allowed.
 items.add(new Dog());
}

void putCarToCollection(Collection<Car> items)
{
 //Only cars allowed.
 items.add(new Car());
}

Fetching items from the collection:

Listing 2.4

void fetchDogFromCollectionDoAction(Collection<Dog> items)
{
 for (Dog dog : items)
 {
 //No type checking required.
 dog.makeSound();
 }
}

void fetchCarFromCollectionDoAction(Collection<Car> items)
{
 for (Car car : items)
 {
 //No type checking required.
 car.drive();
 }
}

The code to be run as a whole is as follows:

Nokia Shaping the future of telecommunication. Check how the experts do it. 93Nokia Shaping the future of telecommunication. Check how the experts do it.92

3.1. Subtyping generics: is it really an issue?
Java developers are aware of the fact that it is safe to assign an ob-
ject of one type to an object of another type as long as the types are
compatible. To be more precise, Figure 1 depicts an inheritance
structure which represents the relation between Java objects.

Figure 1 Example of simple inheritance.

Object

Animal

Chihuahua

DuckDog

Listing 2.8

class GenericClass<T>
{
 private T item;

 //Generic instance variable
 //set in the constructor.
 GenericClass(T item)
 {
 this.item = item;
 }

 //Getter code omitted.

 public static void main(String[] args)
 {
 GenericClass<Dog> dogGeneric =
 new GenericClass<>(new Dog());
 Dog dog = dogGeneric.getItem();
 dog.makeSound();
 }
}

In the trivial code snippet in Listing 2.6 above, the method accepts
a collection of items and returns the fi rst element of the collection.
Interestingly, at the compile time, the type is unknown, and any type
of object fi ts. It is worth noticing that the method parameter re-
quires no special treatment while:

• null reference checking
• verifying whether the collection is empty
• returning the value of the fi rst collection element

The fact that they are generic is not signifi cant in this particular
case.

Listing 2.7

void runIt()
{
 List<Dog> dogs = new ArrayList<>();
 dogs.add(new Dog());
 //Generic method used for dogs.
 Dog firsDogItem = getFirstItem(dogs);
 firsDogItem.makeSound();

 List<Car> cars = new ArrayList<>();
 cars.add(new Car());
 //Generic method used for cars.
 Car firstCarItem = getFirstItem(cars);
 firstCarItem.drive();
}

Listing 2.7 explains why generics is so powerful. A method taking
an argument of any type and solving it during the runtime may be
reused in the application’s code. It leads to a signifi cant reduction
of code multiplications, which in turn yields in a much cleaner and
reusable code. This result is a highly desirable one, especially in big
scale applications.

2.2.2. Generic constructors
A constructor becomes generic if it declares one or more type
variable(s). In Listing 2.1., it may be noticed that the instance var-
iable item was set by means of the setter method. However, the
member can also be set in the constructor at an object’s initia-
tion stage.

3. Subtyping issue and generic wildcards
This section explains the diff erence between a Java object type
and generics subtyping. Those two terms are very often misun-
derstood.

As for generics, the same principles apply here. The code snippet in
Listing 3.2 explains the principle:

Listing 3.2

List<Animal> animals = new ArrayList<>();
animals.add(new Animal());
animals.add(new Dog());
animals.add(new Chihuahua());
animals.add(new Duck());

Adding items to the collection in such a manner is safe. After all, as
they are all Animal, the collection will accept all of its subtypes with-
out any reservations. Obviously, fetched objects from the list will be
a type of Animal. Hence, having a specifi c object, casting operation,
and type checking is required here. The example appears simple and
understandable. The situation, however, looks completely diff erent
when dealing with such an example as in Listing 3.3.

Listing 3.3

void addAnimals(List<Animal> animals)
{
 //Implementation omitted
}

What kind of arguments are acceptable? The answer may seem ob-
vious at fi rst, a list of animals. Does this mean that it is possible to
pass a list of Dogs, Chihuahuas, or Ducks? Such an answer seems
obvious based on what was expected from previous explanations.
Unfortunately, the answer is no, because List<Dog> and List<Chi-
huahua>, etc. are not subtypes of List<Animal>.

In order to clarify, it is important to diff erentiate two things. First,
attempting to pass, e.g. a list of Dogs to the method from Listing 3.3
results in a compilation error as presented in Figure 2 below.

In the example:

• Chihuahua is a subtype of a Dog.
• Dog is a subtype of an Animal.
• Chihuahua is a subtype of an Animal.
• Duck is a subtype of an Animal.
• They are all a subtype of an Object.
• Nevertheless, a Duck is not a subtype of a Dog and Chihuahua.

In the object-oriented terminology, the relation is called “is-a” relation.
In other words, a Chihuahua is-a Dog, a Dog is-a Animal, etc. Therefore,
in the Java code, it is safe to perform the following assignments:

Listing 3.1

class Animal {}

class Dog extends Animal {}

class Chihuahua extends Dog {}

class Duck extends Animal {}

void isaRelationship()
{
 //Is-a relationship examples.
 Object object = new Object();
 Animal animal = new Animal();
 Dog dog = new Dog();
 Chihuahua chihuahua = new Chihuahua();
 Duck duck = new Duck();

 animal = dog;
 animal = chihuahua;
 animal = duck;
 dog = chihuahua;

 object = animal;
 object = dog;
 object = chihuahua;
 object = duck;
}

Figure 2 Compilation error: incompatible types.

Nokia Shaping the future of telecommunication. Check how the experts do it. 95Nokia Shaping the future of telecommunication. Check how the experts do it.94

Listing 3.6

void addAnimalsTest()
{
 //Creating list of Dogs.
 List<Dog> dogs = new ArrayList<>();
 //Adding a Dog to the collection.
 dogs.add(new Dog());
 //Method accepts wildcard type.
 addAnimals(dogs);
}

void addAnimals(List<? extends Animal> animals)
{
 for (Animal animal : animals)
 {
 //Objects in collection cast to upper type.
 }
}

Upper bounding simply means imposing the upper type restriction
of the types to be accepted.

3.3. Unbounded wildcards
The unbounded wildcard type is declared using a wildcard character
(?); for example, List<?> means a list of an unknown type. The un-
bounded wildcard approach is useful when:

• implementing a method which uses API of the java.lang.Object
class

• The code does not depend on the type. A good example here is
the java.util.List.size method; there is no need to know the type
of the collection in order to count objects.

Listing 3.7

void unboundedWildcard(List<?> list)
{
 for (Object listItem : list)
 {
 //Implementation omitted.
 }
}

Second, adding Dogs, for example, to the list of Animals is accept-
able as the following code snippet depicts (addAnimals method
from Listing 3.3).

The code to be tested as a whole is as follows:

Listing 3.4

void addAnimalsTest()
{
 //Creating list of animals.
 List<Animal> animals = new ArrayList<>();
 //Adding a dog to the list.
 animals.add(new Dog());
 //Passing the animals list to the method.
 addAnimals(animals);
}

This is often misunderstood by developers when it comes to writing
code that uses generics. The problem can easily be solved by means
of wildcards. In the Java language syntax, the operator is represent-
ed by means of a question mark (?) and means an unknown type. It
can be utilized in a variety of situations; this paper, however, focuses
specifi cally on the following aspects: unbounded, lower and upper
bounded wildcards.

3.2. Upper bounded wildcards
An upper bounded wildcard is used to relax the restriction on
a variable. To declare it, a wildcard character (?) should be used,
followed by the extends keyword, followed by the base type. To
make the method from Listing 3.3 work with a list of Dogs, Ducks,
and Chihuahuas, the following modifi cation shown in Listing 3.5
is required:

Listing 3.5

void addAnimals(List<? extends Animal> animals)
{
 //Implementation omitted.
}

It is now safe to feed the method with the list of types that inherit
from the Animal. Objects taken out from such a collection are cast
to the upper type from the inheritance hierarchy; in the presented
case, it is the Animal type.

Lower bounding simply means imposing the lowest possible type in
the inheritance hierarchy restriction of the types to be accepted.

Conclusion
The purpose of this paper was to make generics easier to under-
stand for those who may fi nd it confusing. Discussed issues were
supported by straightforward examples in order to present the
subject matter as easily comprehensible as possible. It is my hope
that after reading this paper and analyzing the examples, generics
will start being utilized with more awareness, especially by those
who have often used it after a cursory glance at some tutorials with-
out actually understanding it. Generics can be a very powerful tool,
and as with every tool, whenever it fi nds itself in skillful hands, good
things may come out of using it.

References
[1] https://docs.oracle.com/javase/tutorial/java/generics/types.html

About the author

I am a graduate of the Electronics faculty of Wrocław
University of Technology. I work as a Java Software
Engineer in the MBB CEM & OSS department. I am
involved in developing software that off ers end-to-
end solutions in the areas of confi guration, and fault
and performance management for mobile networks
operators. The job is very interesting even though
challenging at times. All in all, it is good to feel that the
work we do in our department actually serves a good
cause.

Krzysztof Bulwiński
Software Engineer
MBB CEM & OSS

The objects taken out of the unbounded type collection can be cast
to the specifi c ones. Of course, an instance type checking is strongly
advised beforehand. An unbounded wildcard, in other words, means
no type restrictions.

3.4. Lower bounded wildcards
The upper bounded wildcard restricts the unknown type to be
a specifi c type of a subtype of that type and is specifi ed by the
extends keyword. In a similar manner, a lower bounded wildcard
restricts the unknown type to be a specifi c type or a super type
of that type. To declare it, a wildcard character should be used (?),
followed by the super keyword, followed by its lower bound type.
Using the inheritance tree presented in Figure 1 , let us assume that
there may be a need to implement a method that accepts a list of
java.lang.Object Animals and Dogs. This can be achieved by means
of the lower bounded wildcard type as follows:

Listing 3.8

void lowerBounded(List<? super Dog> objects)
{
 for (Object object : objects)
 {
 //Implementation omitted.
 }
}

Objects stored in such a bounded collection are cast to the java.
lang.Object type. It may seem unusual at fi rst that the collection of
a specifi ed type returns objects as java.lang.Object objects. How-
ever, on second thoughts, it seems to be a reasonable approach.
Such a collection can accept anything that is upward compatible
with the Dog type. Therefore, in order to avoid ambiguity, it is safe
to cast any object to the java.lang.Object type. After all, the com-
piler does not know what specifi c type to expect. Naturally, collec-
tion items can be easily converted to its specifi c type. The method
from Listing 3.8 can be invoked as follows:

Listing 3.9

//Adding list of Dogs.
lowerBounded(new ArrayList<Dog>());
//Adding list of Animals.
lowerBounded(new ArrayList<Animal>());
//Adding list of Objects.
lowerBounded(new ArrayList<Object>());

Nokia Shaping the future of telecommunication. Check how the experts do it. 97Nokia Shaping the future of telecommunication. Check how the experts do it.9696

Professional Software Development

 Bartosz Kwaśniewski
Software Developer
MBB Single RAN

Functional Reactive Programming
Paradigm in JavaScript

Introduction
The purpose of this paper is to describe the Functional Reactive
Programming (FRP) paradigm and verify how well the language of
JavaScript (JS) supports it. The existing literature on FRP, its imple-
mentations, benefi ts, and uses, has been reviewed, and an over-
view of JavaScript paradigms, concepts, and properties has been
provided to precisely state what a paradigm is and how JavaScript
supports it.

FRP originated from an animation library FRAN, hosted in a purely
functional and strong-typed Haskell language. JavaScript, contrary to
Haskell, is a multi-paradigm language, non-pure, without type check-
ing. Thus, a question arises if JavaScript might be used to program
reactive systems in a functional way. The advantages of FRP, JavaS-
cript facilities, and its existing libraries would need to be verifi ed.

JavaScript is “The World’s Most Misunderstood Programming Lan-
guage” [28] because of its: misleading name, Lisp in C’s clothing,
typecasting, design errors, lousy implementations, bad books, sub-
standard standard, amateur programmers, and fake object-orienta-
tion. To complete Douglas Crockford’s list, the author of JavaScript:
Good Parts [29], it seems appropriate to mention the existing vari-
ety of programming styles that a programmer can freely intermix.

A good language for large programs should support several para-
digms because diff erent issues require diff erent concepts to solve
them. According to MDN [38], “JavaScript is a lightweight, interpret-
ed, object-oriented language with fi rst-class functions and closures.
It is known as the scripting language for Web pages, but also used in
many non-browser environments as well such as Node.js.” Function-
al JavaScript [12] defi nes JS as “a prototype-based multi-paradigm
scripting language that is dynamic, and supports object-oriented,
imperative, and functional programming styles.”

1. Programming languages, paradigms, and concepts
Programs can be large, reaching millions of lines of source code, writ-
ten by large teams over many years. In order to establish the level of
support of a given language for a specifi c paradigm, paradigms and
programming concepts need to be described, and certain underlying
conditions of how to construct such systems need to be determined.

Each issue has a paradigm that is best for it, and that is why it is impor-
tant to choose carefully the paradigms supported by the language.
Programming paradigms are built out of programming concepts [20]:

• Lexically scoped closures. It is a powerful concept which the
central paradigm, a functional programming, is founded upon.
Many abilities normally associated with specifi c paradigms are
based on closures:

 – Instantiation and genericity, associated with object-oriented
programming, can be done by writing functions that return
other functions.

 – Separation of concerns, associated with aspect-oriented
programming, can be done by writing functions that take other
functions as arguments.

 – Independence. Constructing a program as independent
parts. When two parts do not interact at all, we say they are
concurrent.

• Named state. State introduces an abstract notion of time in
programs. It is important for a system’s modularity, a concept
when updates can be done to a part of the system without
changing the rest of the system.

• Data abstraction and interfaces. It is a way of organizing the use
of data structures according to precise rules which guarantee
that the data structures are used correctly.

There are diff erent levels of support for paradigms by diff erent lan-
guages [22]:

• A language supports a style of programming if it provides
facilities that make it convenient, reasonably easy, safe, and
effi cient to use.

• A language merely enables the technique to be used.
• A language does not support a technique if it takes exceptional

eff ort or skill to write such programs.

Support for a paradigm comes not only in the obvious form of lan-
guage facilities that allow a direct use of paradigms, but also in the
form of:

• extended linguistic support for paradigms that are against
unintentional deviation from the paradigm

• extra linguistic facilities such as libraries and programming
environments

The important issue is not how many features a language possess-
es, but that the features it does possess are suffi cient to support
the desired programming styles. It is not enough that libraries have
been written in the language to support the paradigm. The language
itself should support the paradigm. FRP is an intersection of two
paradigms: reactive programming and functional programming.
The reactive programming style is oriented around data fl ows, con-
currency, the propagation of change, and event-based and asyn-
chronous systems. Reactive systems are systems that continuously
react to stimuli coming from the environment by sending back re-
sponses. Imperative techniques to create reactive systems, such as
the observer pattern, lead to a plethora of problems: inversion of
control, non-modularity, and side eff ects [6].

2. Functional programming
Functional programming is a declarative programming paradigm in
which computation is carried out entirely through the evaluation of
expressions, characterized as having no implicit state. It is often de-
scribed as expressing what is being computed rather than how, in

Nokia Shaping the future of telecommunication. Check how the experts do it. 99Nokia Shaping the future of telecommunication. Check how the experts do it.98

twice with the same parameters, it is guaranteed to return the
same result both times.

• Strong static typing and type inference. Types create a formal
semantics for a better understanding of programming
languages and add additional constraints to it. Possible errors
can be caught at the compile time. Type inference refers to
an automatic deduction of a data type, which makes many
programming tasks easier while still permitting type checking.

3. Functional reactive programming (FRP)
FRP can be understood as a network of functions that propagate
incoming events. Each node is a function, a reaction to an event,
and a switch that propagates an event or new events further. Pro-
gramming such systems is about designing networks of functions.
There are two ways of doing it: fi rst, directly, when a host language
supports the FRP paradigm natively, as it is in Haskell; second, in-
directly, with the help of libraries in a language that lacks such fa-
cilities. In an interface, the library exposes methods called combi-
nators, which add or modify the nodes by changing the routing of
events (see Figure 1). The main property is that the FRP system
must be deterministic, without side eff ects.

The understanding of FRP has evolved throughout time, from a DSL
language to a programming style based on event streams. There
are many views and defi nitions of what FRP is exactly: a data-fl ow
paradigm [16], a conceptual framework [2], a method of modelling
reactive behaviour [2], a useful model [27], an idea [24], a paradigm
extending functional languages [3], a paradigm for programming
hybrid systems [5], a declarative programming model [10], a library
of functions and types that extend Haskell [18], a declarative do-
main-specifi c language [21], an approach to reactive programming
[15], or a continuous synchronous programming [20].

FRP was originally developed in Functional Reactive Animation (Fran)
[13], a Domain-specifi c Embedded Language (DSEL), embedded in
Haskell. Without bias toward application specifi cs, it is being devel-
oped mainly by the Yale Haskell Group [35]. FRP was used as DSELs
in many application domains: robotics (Frob), graphical user inter-
faces (Fruit), parallel programming (HPorter), networking (Nettle),
and computer music (Euterpea). Other uses include general signal
processing, GUI tool-kits, simulators, Web programming [4, 9, 17],
and almost any embedded application.

It is hard to distinguish the core of FRP from the features of
Haskell language itself. FRP was pushed towards real-time embed-
ded systems by several variants, including Real-Time FRP [21] and
event-driven FRP [8]. The core ideas of functional reactive pro-
gramming culminated in Yampa [5, 36, 24], based on an original
idea of Fran.

The goal of FRP implementations is to enable: safe programming
(compile time checking), effi cient programming (real-time), and

contrast to imperative languages, which have an implicit state that
is modifi ed by a sequence of commands.

Functional languages originated from the lambda calculus, called
the smallest universal programming language of the world. Then
comes Lisp, Iswim, ML, and fi nally in 1987 [1] Haskell. The purpose
of Haskell was to consolidate the existing functional languages into
a common one that would serve as a basis for future research and
would popularize the functional paradigm.

The procedure for a functional language is simple: just drop the
assignment statement; however, it is better to characterize a lan-
guage by pointing out the features it does have instead of those it
is lacking in [23]:

• Higher-order functions. Functions that are like any other values,
and additionally they could be passed as arguments or returned
as results. It is the primary abstraction mechanism over values.
It increases modularity by serving as a mechanism for “glueing”
program fragments together [26].

• Non-strict semantics and lazy evaluation (call-by-need). A key
feature is that arguments in function calls are evaluated at
most once, which frees a programmer from concerns about an
evaluation order. The primary power of lazily evaluated data
structures comes from their utility in separating data from
control.

• Equations and pattern-matching. Using equations as part of the
syntax is a way of making functional programming look concise
and elegant. Equations could be considered as defi nitions of
functions. It is a way of calling a diff erent function based on
a diff erent context. There could be several equations defi ning
the same function, only one of which is presumably applicable in
a given situation.

• Data abstraction mechanisms. Data abstraction is a way of
organizing the use of data structures according to precise rules
which guarantee that the data structures are used correctly. It
improves modularity, security, and clarity of programs, which
helps to write large programs:

 – Modularity is improved because one can abstract away from
implementation details, and implementation could be divided
into separate parts developed by diff erent people.

 – Security is improved because the interface defi nes the
authorized operations on the data structures, no other
operations are possible, and its violations are automatically
prohibited.

 – Clarity is improved because data abstraction has an almost
self-documenting fl avor and creates simplifi ed models not
obscured with details.

• Purity and referential transparency with equational reasoning.
Purity, the lack of side eff ects, accounts for the primary ability to
apply equational reasoning because a pure language possesses
the property of referential transparency. If a function is called

• N-ary FRP. It is an improvement on signal functions, where signal
functions are not functions from signal to signal but rather signal
vector to signal vector.

3.2 FRP example in Yampa
Yampa (Arrowized FRP) is an instantiation of FRP as a domain-spe-
cifi c language embedded in Haskell. Its most characteristic feature
is that the core FRP concepts are represented using arrows, a gen-
eralization of monads. The programming discipline induced by ar-
rows prevents certain kinds of time-leaks and space-leaks that are
common in generic FRP programs, thus making Yampa more suita-
ble for systems having real-time constraints (see Figure 2).

The basic concept is a signal function, a mapping from an input signal
to an output signal. The Signal Function (SF) type (see Listing 1) is
made an instance of the Arrow class. The Yampa program expresses
the composition of a possibly large number of signal functions into
a composite signal function.

Listing 1 Signal function.

-- Signal Function
SF a b = Signal a -> Signal b

A minimal universal set of combinators is suffi cient to express all
possible wirings. The fi rst three combinators constitute a minimal
universal set (see Listing 2).

composability (a functional framework built of smaller modules
piecewise). The origins of FRP inspired a wide variety of reactive sys-
tems and libraries in many areas and languages: C++ [11, 31], Python
[19], Java [10], JavaScript [9, 32], and Scala [6], or F# [33].

3.1 FRP concepts and semantics
FRP integrates reactivity directly into the functional program-
ming style while hiding the mechanism that controls the time fl ow
under an abstraction layer. It supports both continuous and dis-
crete time varying values: a signal or behavior is an abstraction of
a continuous and time-varying value, an event is an abstraction
of occurrence, and an event stream is an abstraction of discrete
incoming and outcoming changes. Reactivity is achieved by pro-
viding constructs for specifying how signals change and propagate
in response to events (event stream). A system is described as
signal-processing networks; it is described in terms of functions
mapping signals to signals. The synchronous data-fl ow principle
and support for both continuous and discrete time are common
for all variants of FRP. Three distinct semantic frameworks have
emerged:

• Classic FRP. Signals (behaviors) and events are fi rst-class values
which are directly manipulated by various language constructs.

• Unary FRP (Signal functions). Its semantics includes the concept
of signals but does not include them as fi rst-class values or
reactive constructs. More exactly, functions on signals are
manipulated and made reactive. Events are represented as
a special case of signals and manipulated with specialized signal
functions.

Figure 1 FRP as a programmable network of functions
by combinators.

FRP

Network of Signals and Event Flow

 – event propagation
 – function

Network Control
Interface of Combinators

fi lter, merge, map, …

Event Stream

Nokia Shaping the future of telecommunication. Check how the experts do it. 101Nokia Shaping the future of telecommunication. Check how the experts do it.100

4. JavaScript: overview
JavaScript is considered a problematic language for developing large
scale applications; it is not yet clear what should be done about it
[25]. It is essential to understand what exactly these shortcomings
are and why they should be remedied.

4.1 JavaScript: shortcomings and remedies
• Bad scoping semantics. All variables live in the global scope,

unless explicitly declared local. Curly braces do not open a new
scope. The only local scope available is at the function level.

• Weak typing. While a static type system is often a great help in
fi nding errors and reasoning about code, the real problem is
that if an operation is applied to values with mismatching types,
rather than throwing an error, the runtime silently attempts
to convert one or more of the values into something which is
compatible with the other. This has interesting consequences,
e.g. the equality operator not being transitive.

• Poor support for the functional paradigm. If you defi ne
a functional language as a language that supports closures,
fi rst-class and higher-order functions, then yes, JavaScript is
a functional language. However, if you also consider such factors
as support for immutability, purity, algebraic data types, strong
types, partial application, lazy evaluation, pattern matching,
and equitational look, then no, JavaScript is not a functional
language. JavaScript merely enables the functional programming
style to be used because it lacks facilities that make it convenient
and safe to use that style, and there is no linguistic that guards
unintentional deviation from the paradigm. Fortunately, there
are extra-linguistic facilities such as libraries, which help
developers to use the functional style.

• Lacking modularity. JavaScript does not support modules or
include fi les, making it extremely cumbersome to link individual
pieces of code together.

JavaScript is a fl exible language, which makes extending it easy.

4.2 JavaScript as a Functional Reactive Language
JavaScript merely enables functional programming to be used. Be-
cause JavaScript lacks facilities that make it convenient, safe, and
effi cient to use that style, there is neither core nor an extensive lin-
guistic support for FRP. However, there are extra linguistic facilities
such as libraries, which enable JavaScript support for the FRP par-
adigm:

• Flapjax [9]. Flapjax is a programming language designed for
client-based Web applications.

• RxJS. Reactive Extensions for JavaScript is a library for
transforming, composing, and querying streams of data.

• BaconJS. Transforms data streams with a map and fi lter,
combines with merge and combine. [37].

Listing 2 Primitive operators and combinators.

-- primitive operator lifting normal function to Signal Function
arr :: (a -> b) -> SF a b
(>>>) :: SF a b -> SF b c -> SF a c

-- primitive combinator to compose signal functions
(&&&) :: SF a b -> SF a c -> SF a (b, c)

A successful demonstration of the performance of signal function
implementations was an implementation of the classic game “Space
Invaders” in Yampa. Using this framework, together with looping
combinators, the game was implemented in a manner of objecto-
riented programming, where each game object was represented by
a signal function, and objects could pass messages to each other as
well as respond to external input.

A simple physical model and a control system for a gun can be spec-
ifi ed in just a few lines of Yampa code (see Listing 3):

Listing 3 Example of Yampa usage.

data SimpleGunState = SimpleGunState {
 sgsPos :: Position2,
 sgsVel :: Velocity2,
 sgsFired :: Event ()
}

type SimpleGun = SF GameInput SimpleGunState

simpleGun :: Position2 -> SimpleGun
simpleGun (Point2 x0 y0) = proc gi -> do
 (Point2 xd _) <- ptrPos -< gi
rec

-- Controller
let ad = 10 * (xd – x) – 5 * v

-- Physics
v <- integral -< clampAcc v ad
x <- (x0 +) ^<< integral -< v
fire <- leftButtonPress -< gi
returnA -< SimpleGunState {
 sgsPos = (Point2 x y0),
 sgsVel = (vector2 v 0),
 sgsFired = fire
}

Listing 4 Example of BaconJS usage with some combinators.

var incomingStream = Bacon . sequentially (100, [
 { id: 1, timeout : 300, type : "start" , value : 1},
 { id: 2, timeout : 300, type : "start" , value : 2},
 { id: 3, timeout : 400, type : "start" , value : 3},
 { id: 2, timeout : 300, type : "cancel" , value : 4},
 { id: 1, timeout : 900, type : "cancel" , value : 5},
 { id: 1, timeout : 300, type : "start" , value : 6}
]);

(function process (stream) {
 return stream
 .filter (function (ev) {
 return ev. type === "start";
 })
 .flatMap (function (evStart) {
 return Bacon
 .later (evStart . timeout , evStart)
 .takeUntil (stream
 .filter (function (evCancel) {
 return evStart .id === evCancel
 .id && evCancel.type == "cancel";
 })
 .take (1)
);
 })
 .map (function (ev){
 return ev. value ;
 })
})(incomingStream)
 .onValue(function(val){console.log(val);}) //1,3,6

The most promising library is BaconJS. It makes use of combinators
to design a network of event propagations. The fundamental ab-
stractions here are observable event streams. Streams represent
a series of multiple events. Using streams allows a simple expres-
sion of behavior that spans over time and multiple events. The FRP
in the sense of JavaScript is understood as an event-stream pro-
cessing; it is understood that streams are transformed into reac-
tions to incoming events.

4.3 FRP example in BaconJS
Bacon.js is a reactive programming library that might be used on
a client, server, or in a game programming. Everything becomes an
asynchronous data stream: database on the server, mouse events,
promises, and server requests. This lets you avoid what is known
as “the callback hell” and enables you to handle errors better and
compose streams together, which in turn gives you a better con-
trol and fl exibility. This is achieved by various combinators and ob-
servers.

Combinators change the route of event propagation by fi ltering,
merging, mapping, switching, etc.; they are language constructs
which shall not break the purity. The common combinators in Ba-
conJS are: fi lter, map, scan, take, skip, scan, fi rst, last, fl atMap, fold,
diff , reduce, zip, combine, concat, and many more. Observers are
the place where we apply side eff ects by changing a state, where we
write an output. The observers are: onValue, onError, onEnd. How-
ever, JavaScript does not have any constructs to prevent the de-
veloper from violating those requirements. In Listing 4, there is an
example of usage of fl atMap (see Figure 3) and fi lter combinators
processing the stream to deliver an event value after a timeout or
not deliver it at all if there is a cancel with a matching id before the
timeout.

Figure 3 Example of fl atMap combinator.Figure 2 Common combinators.

a

f(1)

f(2)

a.flatMap(1) "b""a"

1

"b"

"a"

2

arr f sf1 >>> sf2 sf1 &&& sf2

sf1 sf2f

sf1

sf2

Nokia Shaping the future of telecommunication. Check how the experts do it. 103Nokia Shaping the future of telecommunication. Check how the experts do it.102

 [11] FRP in C++, X. Dai, 2010
 [12] Functional JavaScript, M. Fogus, 2013
 [13] Functional Reactive Animation, C. Elliott, 1997
 [14] Functional Reactive Programming, S. Blackheath 2015
 [15] Keeping Calm in the Face of Change, Towards Optimisation

of FRP by Reasoning about Change, N. Sculthorpe, 2011
 [16] Liftless Functional Reactive Programming, C. Monsanto, 2009
 [17] Multi-tier Functional Reactive Programming for the Web,

B. Reynders, 2014
 [18] Parallel Functional Reactive Programming, J. Peterson, 2000
 [19] Practical Functional Reactive Programming, J. Peterson, 2014
 [20] Programming Paradigms for Dummies – What Every

Programmer Should Know, P. Van Roy, 2009
 [21] Real-Time FRP, Z. Wan, 2001
 [22] The C++ Programming Language 3rd. ed., B. Stroustrup, 1997
 [23] The Conception, Evolution, and Application of Functional

Programming Languages, P. Hudak, 1989
 [24] The Yampa Arcade, A. Courtney, 2003
[25] Towards a Declarative Web, A. Ekblad, 2012
[26] Why Functional Programming Matters, J. Hughes, 1990
[27] Wormholes – Introducing Eff ects to FRP, D. Cort, 2012
[28] http://javascript.crockford.coml
[29] JavaScript: The Good Parts, D. Crockford, 2008
[30] Asynchronous Functional Reactive Programming for GUIs,

E. Czaplicki, 2013
[31] schlangster.github.io/cpp.react
[32] www.fl apjax-lang.org
[33] Reactive Web Applications with Dynamic Datafl ow in F#,

A. Tayanovskyy, 2014
[34] http://elm-lang.org
[35] http://haskell.cs.yale.edu
[36] https://wiki.haskell.org/Yampa
[37] https://baconjs.github.io
[38] Mozilla Developer Network (MDN) https://developer.mozilla.org

Conclusion
FRP is more than a paradigm; it is a technique or framework to write
reactive systems in a more scientifi c way. It is promising, but not yet
a mature technology.

There is an ongoing research in the FRP fi eld. The fi rst book about
FRP, Functional Reactive Programming [14], is about to be published
and FRP frameworks for the Web have recently emerged, e.g. Elm
[34]. Unfortunately, there is still not much news about large systems
successfully developed with FRP paradigms. FRP in JavaScript is also
a new research topic, and only about Web and GUI development
[4, 9, 7, 12, 17, and 25].

JavaScript’s support for FRP is on a library level; it is not direct, as in
the case of Haskell. Other languages, with the help of its dedicated li-
braries, have the same kind of support as JavaScript with its BaconJS.

References
 [1] A History of Haskell – Being Lazy With Class, P. Hudak, 2007
 [2] A Survey of Functional Reactive Programming, E. Amsden, 2013
 [3] An Axiomatic Semantics for Functional Reactive

Programming, C. King, 2008
 [4] An Evaluation of Reactive Programming and Promises for

Structuring Collaborative Web Applications, K. Kambona,
2013

 [5] Arrows, Robots, and Functional Reactive Programming,
P. Hudak, 2003

 [6] Deprecating the Observer Pattern, I. Maier, 2010
 [7] Directing JavaScript with Arrows (Functional Pearl),

K.Y. Phang, 2010
 [8] Event-Driven FRP, W. Taha, 2002
 [9] Flapjax – Functional Reactive Web Programming,

L. Meyerovich, 2007
 [10] Frappe – Functional Reactive Programming in Java,

A. Courtney, 2001

About the author

I am a Software Developer with a few years of
experience with C++, JAVA, PHP, and JavaScript.
I work in the MBB Single RAN OMCP department that
develops BTS’s main OAM component in the JavaScript
language with an FRP style on a NodeJS framework.

Bartosz Kwaśniewski
Software Developer
MBB Single RAN

Nokia Shaping the future of telecommunication. Check how the experts do it. 105Nokia Shaping the future of telecommunication. Check how the experts do it.104104

Professional Software Development

 Bartosz Woronicz
Engineer, Software Confi guration
MBB System Module

Python: A General–purpose Language
with a Low-level Entry Barrier

Introduction
An early idea of the Python programming language dates back to
the late 1980s. At that time, a talented Dutch programmer Guido
van Rossum had already gained quite a lot of experience with the
ABC programming language, which later on signifi cantly infl uenced
his subsequent and a more mature creation, the so-called Python.
The programming language inspired by ABC, which van Rossum cre-
ated, consists of the following principles:

• Dynamic: variable declarations are not required, in contrast to
C/C++ where you have to specify, declare the type of the data, i.e.
int count; char keystroke; etc. In Python, we simply use
var = "somevalue"

• Strongly typed: one cannot implicitly add two data objects of
diff erent types, see the Python interpreter example:

>>> message = "I like cheese and number"
>>> favnum = 7
>>> message + favnum
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

• Statement nesting by indentation: the so-called off -side rule [1].
Another example in Python:

class MyClass(object):

 def mymethod(self, *args, **kwargs):
 execution_block()

 def print_name(self):
 print self.name

• Infi nite arithmetic precision: the possibility to use unrestricted
real numbers, which is particularly convenient for novices at the
language

The Python language has been positively appraised by a number
of companies, organizations, and governmental institutions world-
wide, which has signifi cantly contributed to its widespread usage
within Nokia.

1. Python@Nokia Networks
Every large company like Nokia annually faces the issue of em-
ployees switching projects internally and new people being hired.
This means that a code which has been written by one person
must now be maintained and extended by others. In point of fact,
this is Python’s most valuable advantage, a strong emphasis on

code’s readability. By utilizing strict rules, it enforces a uniform
style; for instance, as a result of the indentation rule, the code
has an appropriate and unchanging visual structure. Moreover, on
their website, the Python Foundation (an organization managing
the language’s development) off ers a series of documents known
as Python Enhancements Proposal (PEP); they are design docu-
ments for confronting new major features of the language with the
programming community. In addition, there is a document which
provides a thorough coding style guide, like the very well-known
and widely acclaimed PEP8 [2]. In a way, it is reminiscent of Request
for Comments (RFC), a document detailing standards in the world
of computer network connectivity.

The language is truly general in its purpose, starting from a simple
script hacking to Web applications (webframeworks Django, Flask)
and scientifi c applications (SciPy, pandas, matplotlib), a version con-
trol system (mercurial), and even a machine-learning library (scikit-
learn). In Software Confi guration Management (SCM), where I work,
it has been utilized for an automation machine with the Continuous
Integration system as well as for writing certain internal tools such
as web applications for gathering and processing build data.

As it has been mentioned in the Introduction, Python has become
particularly famous for its suitability for young apprentices seeing
as it is probably one of the easiest languages to immediately start
coding with. New coders can easily acquire the most common parts,
then go deeper and optimize their approach by incrementally gain-
ing new skills. This language is multi-paradigmatic, so one can move
from using imperative, procedural operations such as for-loop to
proceed then to list-comprehension, which is typical for functional
languages (see Listing 1).

Listing 1

this is simple for-loop building the list of squares of the
elements from 0 to 9
new_list = []
for i in range(10):
 new_list.append(i**2)

this is list comprehension
new_list = [i**2 for i in range(10)]

The example below depicts a transformation into a more concise
code string as well as the acceleration of execution. Let us run the
test with a timeit module directly from the console (see Listing 2).

Nokia Shaping the future of telecommunication. Check how the experts do it. 107Nokia Shaping the future of telecommunication. Check how the experts do it.106

 <features scripts="yes" >
 <item BUGTRACKER_ID="NF" BUGTRACKER_Type="Feature"
 regexp="NF-[0-9]+"/>
 <item BUGTRACKER_ID="NFI" BUGTRACKER_Type="Feature"
 regexp="NFI\s?[0-9._]+"/>
 <item BUGTRACKER_ID="FCR" BUGTRACKER_Type="Feature"
 regexp="FCR\s?[0-9._]+"/>
 </features>
 <changenotes scripts="yes" >
 <item BUGTRACKER_ID="NF" BUGTRACKER_Type="Feature"
 regexp="NF-[0-9]+"/>
 <item BUGTRACKER_ID="NFI" BUGTRACKER_Type="Feature"
 regexp="NFI\s?[0-9._]+"/>
 <item BUGTRACKER_ID="FCR" BUGTRACKER_Type="Feature"
 regexp="FCR\s?[0-9._]+"/>
 </changenotes>
 <unsupportedFeatures scripts="no" >
 <item BUGTRACKER_Type="???"/>
 </unsupportedFeatures>
 <restrictions scripts="no" >
 <item BUGTRACKER_Type="Restriction"/>
 </restrictions>
 <neededConfigurations scripts="no" >
 <item BUGTRACKER_Type="???"/>
 </neededConfigurations>
 </mapping>
</RN-mapping>

In the interactive shell session below, we parse the XML fi le with an
XPath query language, utilizing Python’s xml module (see Listing 4).
First we get the root element, and then we search for the node un-
der the mapping node called features, with a scripts attribute
with a yes value. In this way, we get a list of features of the new re-
lease note, and we fetch the regexp attribute value when parsing it.

Listing 4

>
>> from xml import etree as ET
>>> tree = ET.parse('/tmp/XML_RN_mapping.xml')
>>> root = tree.getroot()
>>> print root
<Element RN-mapping at 0x7fecb5021b00>
>>> root.xpath('mapping/features[@scripts="yes"]/*')
[<Element item at 0x7fecb5021f80>,
 <Element item at 0x7fecb5021fc8>,
 <Element item at 0x7fecb5029050>]
>>> [x.attrib['regexp'] for x in root.xpath('mapping/features[@
scripts="yes"]/*')]
['NF-[0-9]+', 'NFI\\s?[0-9._]+', 'FCR\\s?[0-9._]+']
>>>

Listing 2

$ python -mtimeit 'new_list = []' 'for i in range(10): new_list.
append(i**2)'
1000000 loops, best of 3: 1.56 usec per loop

$ python -mtimeit 'new_list = [i**2 for i in range(10)]'
1000000 loops, best of 3: 0.931 usec per loop

It is evident from the example in Listing 2 that the second runtime
is signifi cantly shorter.

2. Scripting language
Python has an interpreter. It has been designed to interact with the
user. As a result, it is very convenient for prototyping. Providing that
it is a scripting language, it allows its internal behavior to be tested
and modifi ed by the interpreter. An interactive interpreter can be
used to test the Python code ad hoc.

XML fi les are very common for the kind of work which is done within
SCM. They contain a lot of information about the software devel-
opment. Getting the code parsing XML right the fi rst time around
might not be easy; however, with a Python interpreter shell, one can
step-by-step create a working prototype with it.

An example of XML fi le, similar to the one in Listing 3, is used to pro-
vide a mapping for the software release note in the bugtracker soft-
ware with a list of regular expressions for new features, changes, etc.

Listing 3

<?xml version="1.0" ?>
<RN-mapping version="1.1">
 <configuration>
 <separator scripts="yes">
 <item regexp="(?=[:])"/>
 </separator>
 </configuration>
 <mapping>
 <correctedFaults scripts="yes" >
 <item BUGTRACKER_ID="CF" BUGTRACKER_Type="Fault"
 regexp="(?<=CF[])[A-Z0-9]+|CF[0-9]+"/>
 </correctedFaults>
 <revertedCorrectedFaults scripts="yes" >
 <item BUGTRACKER_ID="CF" BUGTRACKER_Type="Withdrawal"
 regexp="(?<=CF[])[A-Z0-9]+|CF[0-9]+"/>
 </revertedCorrectedFaults>

software without any compilation (in contrast to C/C++ or Java).
Nevertheless, in some cases, scripts have to handle diff erences
between operating systems as is the case in the example in
Listing 6.

Listing 6

import os
if os.name == 'nt':
 tool_regexp = 'CreateBinary[̂ .]*[.]exe'
else:
 tool_regexp = 'CreateBinary[̂ .]*[.]linux'
…

• Play with classes
Now, we shall move on to a more sophisticated example.
Let us create a stub class called MyClass, and then defi ne its
function as print_with_stars. Next, it is necessary to attach
a method to the already created class. It is quite clear that
the method is provided by the class’ internal dictionary
(see Listing 7).

Listing 7

>>> class MyClass(object):
... pass
...
>>> def print_with_stars(self):
... print "*%s*" % self
...
>>> import types
>>> MyClass.print_with_stars = types.MethodType(print_with_
stars)
>>>
>>> MyClass.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'MyClass' ob-
jects>, '__module__': '__main__', '__weakref__': <attribute '__
weakref__' of 'MyClass' objects>, '__doc__': None, 'print_with_
stars': <function print_with_stars at 0x7fe81ca50668>})

However, in this way, the function attached will not become a meth-
od. This so-called monkey-patching is wrong because it does not
change the existing instances. Imagine a situation where we have
already created a mc object, and then we attached the function to
its class (see Listing 8).

3. Object-oriented language
In contrast to other popular object-oriented programming (OOP)
languages, in Python literally everything is object-oriented. The ap-
plied approach contains typical OOP features such as inheritance
and polymorphism, but excluding access control in methods (e.g.
private, protected, public in C++/Java). The justifi cation for this is
provided by the motto “We’re all adults here,” as the creator has de-
cided that a feature is an unnecessary bloat. There is only a conven-
tion to express the private method in code; it consists in preceding
the name of the method with a double underscore. In such a case, it
only means that the method is intended to run internally, not direct-
ly. Moreover, this will trigger the mechanism to internally rename
the method from __method to _classname__method to avoid name
clashing in the classes inheriting [4]; see the example in Listing 5
below.

Listing 5

class Foo(object):
 def update(self, **kwargs):
 self.attrs = kwargs
 __update = update

class Bar(Foo):
 def update(self, **kwargs):
 self.attrs = kwargs * 2

• It is (quite) fast
In typical scripting languages such as Bash and other Shell
variants, the code is processed line by line or rather by
a tokenization process. By means of language processing, the
code fragments are tokenized, i.e. assigned to categories, and
then their interaction is processed lexically.
In Python, code is compiled to its virtual machine
(intermediary) code, and then executed. In this way, the
program’s execution becomes much faster. The memory is
handled by a garbage collector, so it does not need to be
freed manually. However, in tasks, where the execution time is
critical, some libraries, classes, and methods can be written in
C/C++ and provide Python bindings so that part of code runs
blazingly fast. The examples are lxml library, OpenSSL library,
and many others.

• Portability
The Python code can be launched on any operating system
and processor architecture that has compiled the Python
interpreter. As an example, the automation scripts that we
create run on both Microsoft Windows and GNU Linux hosts,
running the building processes for a diff erent generation of

Nokia Shaping the future of telecommunication. Check how the experts do it. 109Nokia Shaping the future of telecommunication. Check how the experts do it.108

Listing 10

$ wget -O- https://bootstrap.pypa.io/get-pip.py | python – --user

 – Ipython
It is an extremely popular tool [5]. It provides an extended
Python interpreter with an easy completion by a Tab-key
similar to the one in the Unix-like system terminal. It covers
many extra features, including a webapplication notebook
for accessing an interactive shell in a webrowser with extra
features such as printing charts and graphics instantly, which is
impossible in the regular console.

 – Flask
The Python’s world is vast; if we wanted to create a simple
webapp listening on port 8080, for instance, the Flask micro-
webframework [6] might be used for that purpose. Here is an
example of a simple application with a route to URL /api (see
Listing 11).

Listing 11

from flask import Flask, jsonify
app = Flask(__name__)

data = {
 "name": Bartosz,
 "surname": "Woronicz",
 "age": 29
}

@app.route("/api")
def hello():
 return jsonify(data)

if __name__ == "__main__":
 app.run()

Now, we can install the necessary package with the previously men-
tioned PIP and run it (see Listing 12).

Listing 8

>>> mc = MyClass()
>>> mc2 = MyClass()
>>> MyClass.print_with_stars = print_with_stars
>>> mc.print_with_stars
<bound method MyClass.print_with_stars of <__main__.MyClass
object at 0x7fa0db2e34d0>>
>>> mc2.print_with_stars
<bound method MyClass.print_with_stars of <__main__.MyClass
object at 0x7fa0dc1ce3d0>>

Thus all the class instances will have this method bounded.

Instead, the types [3] should be used to modify the created
class-adding method appropriately (see Listing 9).

Listing 9

>>> import types
>>> mc = MyClass()
>>> mc2 = MyClass()
>>> mc.print_with_stars = types.MethodType(print_with_stars, mc)
>>> mc.print_with_stars
<bound method ?.print_with_stars of <class '__main__.MyClass'>>
>>> mc2.print_with_stars
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute 'print_with_
stars'

• Useful modules and tools
The great power of Python is the community. The community is
building and maintaining a number of tools and libraries that can be
reused for many diff erent applications. The most straightforward
access to them is to install them with a program called PIP.
Of course, there are also tools such as easy_install, setuptools,
etc. In this paper, however, we will focus specifi cally on PIP.

 – PIP
This tool enables access to the database of 3rd party Python
modules, together with its dependencies. It can be installed
locally for a particular user. On the Unix-like systems (Linux,
BSD, etc.), you may add ~/.local/bin to your local PATH
variable, and then download and install the tool by scripts (see
Listing 10).

Listing 13

import requests
data = {
 "name": "Guido",
 "surname": "van Rossum"
}
requests.post('http://myapplication/api/user/add', data=data)

4. Python 3: the next generation
As for Python 2.0 the giant leap was the introduction of a better,
full-garbage collection and Unicode support, Python 3 breaks com-
patibility quite a lot. Some features of Python 3 were already includ-
ed in Python 2.7.x, but they were optional; for example, the new way
of string formatting (see Listing 14). Here is a list of the most inter-
esting ones. It is also worth mentioning that the new behavior and
syntax can be forced in 2.x by using a special __future__ module [7].

Listing 14

Python 2.x code
from __future__ import print_function
print("Hello Nokia!")

Generators
In the 3.x edition, most functions that were returning a list type,
now they are returning a generator object. For example, instead
a special built-in function xrange(), now range (returning the list
of integers by amount, start, stop, and step between) acts in the
same way as xrange in the older Python. Apart from dictionary d,
the method d.items() will also return a generator.

Print function
Starting from Python 3, print is no longer an instruction; it is a built-
in function (see Listing 15).

Listing 12

$ pip install --user Flask
$ python hello.py
 * Running on http://localhost:5000/

And when we open the browser, we can see the outcome (see Figure 1).

Figure 1 The output from Flask application.

When we take a look at HTTP protocol headers, the response has
the Content-Type property set to application/json (see Figure 2).

 – requests
The requests module is probably the best of the 3rd party
modules ever created for Python. For instance, communication
with an API webapplication is quite easy, as it can be seen in
Listing 13; a post method is being used with a data parameter,
the dictionary.

Figure 2 HTTP headers from Flask applications.

Nokia Shaping the future of telecommunication. Check how the experts do it. 111Nokia Shaping the future of telecommunication. Check how the experts do it.110

Listing 16

the given string "cheeseshop"
mystring = "cheeseshop"
instead of trying something like
for i in range(len(mystring)):
 print mystring[i]
or even
i = 0
while i < len(mystring): print mystring[i]; i += 1
just iterate over the mystring
for c in mystring: print c

• Do not expect from function changing objects to return
something other than None; it is an extremely common mistake
for a novice lacking an understanding of the diff erence between
mutable and immutable objects. The list is mutable, so it can be
changed in-place without creating a copy, so the result of mylist.
append(X) is just None. But now mylist contains element X.
String, on the other hand, is immutable, and the operation
"smart" + " fox" produces "smart fox", which is the new
string object.

Conclusion
This paper was meant as a brief introduction to Python. On the In-
ternet, there is a lot of literature, use cases, and a number of exam-
ples how Python can be utilized if one felt the need to examine the
matter thoroughly. This programming language is easily applicable,
well-documented, and works well even for people completely unfa-
miliar with coding. Python may not be appropriate for certain use
cases, but for most tasks its versatility is simply ideal.

References
[1] https://en.wikipedia.org/wiki/Off -side_rule
[2] https://www.python.org/dev/peps/pep-0008/
[3] https://docs.python.org/2/library/types.html
[4] https://docs.python.org/2/tutorial/classes.html#private-vari-

ables-and-class-local-references
[5] http://ipython.org/
[6] http://fl ask.pocoo.org/
[7] https://docs.python.org/2/library/__future__.html
[8] https://wiki.python.org/moin/BeginnerErrorsWithPythonPro-

gramming

Listing 15

Python 2.x code
print "Hello Nokia!"
Python 3.x code
print("Hello Nokia!")

• Unifi ed int
Now long and int types become one int type, but in most cases
it behaves like an old long type.

• Arithmetic operations
A division of two integers will give a fl oat instead of being
truncated into an integer. As a result, 1/2 in Python 2.x produces
0, and in version 3.x it produces 0.5.

5. Integration with other languages
Python can be easily integrated with other languages. It works both
ways, by embedding (Python as a library for C) or extending (C library
used in Python). The main implementation is written in C/C++ code
(so-called CPython). Moreover, there are alternative implementa-
tions such as PyPy (written in Python itself), Cython (generating static
C code), Jython (Java) or IronPython (Python for .NET framework).

6. Drawbacks
As is the case with every new programming language, the newcom-
ers to the world of Python are having a hard time understanding
some of the language’s complexities. The language seems easy at
fi rst, but the coders encounter diffi culties because they misunder-
stand certain concepts. Python’s Wiki webpage [8] provides exam-
ples of such errors, together with links to related articles. The list
is long, but the greatest obstacle seems to be that coders who
have previously used C/C++ try to apply its principles to Python
as well. A few examples of the most common errors are as follows:

• Do not use parentheses around test, e.g. if (x=="something"):,
just if x=="something":

• You cannot use assignments in while loop tests, e.g. while
((x=next() != NULL)). But this is a design decision because
it is a common mistake in other languages to use a comparison
operator instead of an assignment and vice versa.

• Over complication while working with iterables,
e.g. see Listing 16.

About the author

I work at MBB System Module (SCM), where I am
responsible for maintaining smooth operation of the
software-building machine. This is accomplished with
a number of diff erent tools and scripting glue, written
primarily in Python and shell scripts, that connects
them. I gather VCSes (version control systems),
continuous integrations, and tests of software in one
lined-up mechanism. On the one hand, we enjoy it
very much when the software-building process picks
up speed and everything goes according to plan; on
the other hand, we never hesitate to go overdrive in
case of a sudden disaster. Additionally, I create and
co-create internal and external training courses and
workshops on Python.

Bartosz Woronicz
Engineer, Software Confi guration
MBB System Module

Nokia Shaping the future of telecommunication. Check how the experts do it. 113Nokia Shaping the future of telecommunication. Check how the experts do it.112112

Professional Software Development

 Michał Bartkowiak
Engineer, Software Development
MBB FDD LTE

Beginning the Adventure:
Writing a Minimal Compiler

Why would anyone want to write another compiler when there are
so many of them around? For example, sometimes it is benefi cial
to create and use a domain-specifi c language (DSL) to facilitate
the development process (e.g. testing). But before the creation of
a production-quality language and its compiler, necessary knowl-
edge and experience has to be gathered. This article is a practical
introduction to development of compilers through providing a basic
example of a programming language and its compiler.

1. Prerequisites

1.1. An overview of the compilation process
Compiler is a computer program that transforms a source language
into the target language. Common example of such transformation
is compilation of C++ source code into x86-64 assembly. In such
case the compiler’s input is a set of text fi les and resulting output
is an executable.

Compilation process can be divided into following stages:

• Lexical analysis
• Syntax analysis
• Semantic analysis
• Optimization
• Code generation

Lexical analysis divides source code into tokens, which can be un-
derstood as words of the source language. Parser, provided with
the tokens, performs syntax analysis. In other words, it validates
the structure of the code. As a result, Abstract Syntax Tree (AST) is
generated.

The aim of semantic analysis is to comprehend the meaning of the
program. For non-trivial programs this is an extremely hard task [1].
Thus compilers perform only limited amount of this analysis to
catch inconsistencies, e.g. usage of undefi ned variables or type in-
compatibility in assignments.

Optimization is a transformation of program code in result of which
program runs faster or uses less of expensive resources (e.g. memory
or size). This modifi cation cannot change the semantics of the program.

Finally, given all information calculated in previous stages, code
generation produces code in target language.

1.2. MiNiK language
To demonstrate what is needed to create a basic compiler, simplistic
language is used. The MiNiK language has the following properties:

• In its global scope only functions are allowed.
• The only data type is a 4-byte integer.

• A function takes a fi xed number of arguments and returns
a single value.

• Arithmetic expressions and comparisons are allowed.
• Functions can only be called with variables as arguments.
• There is one conditional statement (if) and one loop (while)

available.
• read and write functions are provided as a standard library.
• A function called main has to be defi ned in the source code by

the programmer as an entry point to the program

Short example of MiNiK code is shown in Listing 1.

Listing 1 Example of MiNiK code: factorial calculation.

function factorial(val) {
 if (val == 0) {
 return 1
 }
 var newVal := val - 1
 return val * factorial(newVal)
}

function main() {
 var val := read()
 return factorial(val)
}

This article is accompanied by MiNiK compiler’s source code avail-
able at Nokia Book’s Github [2]. In order to fully benefi t from the
presented material, source code and associated comments should
be analyzed in parallel with the article. Makefi les included in the
MiNiK’s compiler source code should serve as a guide for building
various modules of the software.

2. MiNiK Compiler

2.1. LEX: Division of input into tokens
Lexing process is conducted as a left-to-right scan of input string
constituting the source code. The most commonly used tools for
performing the lexical analysis are regular expressions [3]. Since
lexing phase is usually similar among various compilers, dedicated
software to facilitate this task has been developed. The Fast Lexical
Analyzer (fl ex) [4] is one of them. To generate a lexer with fl ex, it is
suffi cient to create a fi le with set of pairs of regular expressions and
C code. Such pair is called a rule. Selected lexing rules for MiNiK are
shown in Listing 2.

Nokia Shaping the future of telecommunication. Check how the experts do it. 115Nokia Shaping the future of telecommunication. Check how the experts do it.114

Listing 3 Selected parsing rules for MiNiK.

Program : Functions { ... };

Functions : Function { ... }
 | Functions Function { ... };

Identifier : TIDENTIFIER { ... };

ExpressionMult : ExpressionAtom { ... }
 | ExpressionAtom MultOp ExpressionMult { ... };

ExpressionAdd : ExpressionMult { ... }
 | ExpressionMult AddOp ExpressionAdd { ... };

Expression : ExpressionAdd { ... }
 | ExpressionAdd CompOp ExpressionAdd { ... };

AssignStatement
 : Identifier TEQUAL Expression { ... };

IfStatement
 : TIF TLPAREN Expression TRPAREN Block { ... };

[...]

AddOp : TPLUS | TMINUS;
MultOp : TMUL | TDIV;
CompOp : TCEQ | TCNE | TCLT | TCLE | TCGT | TCGE;

Given these rules, generated parser is able to, for example, recog-
nize AssignStatement when it encounters an Identifier followed
by assignment token (TEQUAL) and an Expression.

When writing BNF rules, there is often a problem with confl icts existing
inside the grammar. Example of this problem is handling the priority and
associativity of operators. In Bison it could be solved by defi ning op-
erators’ precedence but in MiNiK another approach has been adopted.
Rules for expressions are built hierarchically and it can be noticed that
ExpressionMult will be earlier selected (or reduced in CFGs terminolo-
gy) by generated parser than ExpressionAdd (i.e. with higher priority).

2.3. Abstract Syntax Tree
Syntax tree is called abstract because during its creation only in-
formation necessary for further processing is used. It means that
e.g. information about keywords or parentheses can be omitted be-
cause it is implicitly embedded in the tree. The level of abstraction
is determined by the design of hierarchy of tree’s nodes. Diagram of
the nodes in MiNiK compiler is shown in Figure 2 .

Listing 2 Selected lexing rules for MiNiK.

"function" return TOKEN(TFUNCTION);
"return" return TOKEN(TRETURN);
"if" return TOKEN(TIF);
"while" return TOKEN(TWHILE);
"var" return TOKEN(TVAR);
[a-zA-Z_][a-zA-Z0-9_]* SAVE_TOKEN; return TIDENTIFIER;
[0-9]+ SAVE_TOKEN; return TINTEGER;
":=" return TOKEN(TEQUAL);
"(" return TOKEN(TLPAREN);
[...]

Tokens extracted by fl ex are then passed consecutively to next
phase. Example of lexing of MiNiK’s code fragment is shown in
Figure 1 .

Figure 1 Example of lexing of MiNiK’s code fragment.

2.2. YACC: A tool for building the Abstract Syntax Tree
Given the tokens from lexing stage, syntax rules are checked and
AST is generated by the parser. Similarly to lexing, this phase is of-
ten done with the help of dedicated software (parsers generators),
called Yet Another Compiler Compiler (YACC). One of the most com-
monly used today is GNU Bison [5]. Bison can generate parser for
a language, if it is described by context-free grammar (CFG) [3] rep-
resented in Backus-Naur Form (BNF) [3]. Simply speaking, Bison fi le
contains a set of rules for constructing syntactic groupings using
tokens and/or other syntactic groupings [5] supplemented with se-
mantic actions defi ned as a C or C++ code. Listing 3 shows selected
Bison rules for MiNiK parsing. C++ actions have been omitted as they
will be described in details in next section.

if (a > 10) { a := reduce (a) }

TIF
TIDENTIFIER

TLPAREN

TRPARENTCGT

TINTEGER

TLBRACE

TRBRACE

TEQUAL

Ast::Identifier is created. Similarly, more complex actions
are constructed. The Ast::FunctionCall node is constructed
from Ast::Identifier and Ast::Arguments. At the same time,
TLPAREN and TRPAREN tokens (parentheses) are simply ignored
as superfluous for the AST.

Creation of unnecessary levels of AST is also avoided. For example
in the fi rst rule of Expression the ExpressionAdd is just forwarded
as a result.

Figure 2 Hierarchy of nodes of MiNiK’s abstract syntax tree.

MiNiK program consists of a set of functions and each function is
represented by one AST. Consequently, whole program is repre-
sented as a set of ASTs. Note that hierarchy of lexical scopes is also
encoded in the AST structure.

The ASTs themselves are created during the execution of se-
mantic actions of Bison rules. Semantic actions for selected
parsing rules are shown in Listing 4. For example, when gen-
erated parser encounters TIDENTIFIER token new AST node

+value
Ast::Identifier

«interface»
Ast::Node

+value
Ast::Integer

+name : std::string
+args : std::vector<std::string>
+stmts : std::vector<Statement *>

Ast::Function

+name
+expression

Ast::VariableDecl

+name : std::string
+args : std::vector<std::string>

Ast::FunctionCall

+node : Node *
+minus : bool

Ast::ExpressionAtom

+operation : int
+lhs : ExpressionBase *
+rhs : ExpressionBase *

Ast::ExpressionBinary+identifier : std::string
+expr : ExpressionBase *

Ast::Assignment
+expr : ExpressionBase *
+stmts : std::vector<Statement *>

Ast::IfStatement

+expr : ExpressionBase *
Ast::ReturnStatement

«interface»
Ast::Statement «interface»

Ast::ExpressionBase

+expr : ExpressionBase *
+stmts : std::vector<Statement *>

Ast::WhileStatement

Nokia Shaping the future of telecommunication. Check how the experts do it. 117Nokia Shaping the future of telecommunication. Check how the experts do it.116

2.4. Semantic analysis
After the AST is created, compiler is able to run semantic analysis.
Various kinds of checks can be performed during these stages, de-
pending on the compiled language [3]. For example:

• Checking whether all functions and variables are declared only
once in given scope.

• Type checking.
• Performing advanced static analysis, e.g. available expressions

analysis [1].

MiNiK’s source code is checked if:

• all identifi ers are unique.
• all used identifi ers (functions and variables) are defi ned.

As a fi rst step, MiNiK compiler is iterating over Ast::Function nodes to
gather information about functions. Their names and numbers of ar-
guments are remembered. If any name is duplicated, an error is raised.

In second stage AST is visited again. For Ast::FunctionCall nodes
it is verifi ed whether:

• a function with given name is defi ned.
• the number of arguments of function call is the same as in the

function declaration.

Additionally, during top-down traverse through the AST, lexical
scopes are visited according to their nesting hierarchy. That is why
checks for variables’ declarations and usage are performed correctly.

2.5. Execution and memory model
Before explaining how the code generation works, the execution and
memory model of compiled MiNiK programs has to be presented.

As a fundamental convention, it is established that every expres-
sion in MiNiK leaves its result in EAX register. Next, the mechanism
of function call has to be introduced. Firstly, activation record
(frame) [3] is created on the stack. It consists of function’s argu-
ments, return address and space for function’s local variables. The
size of activation record is proportional to the number of arguments
and maximum number of local variables available at any point of
function execution. Current value of variable is always stored in
dedicated location in memory.

At exit, function’s return value is passed via EAX register, as in case
of every expression. Additionally, the space allocated on the stack
for the local data is released.

In advanced compilers, as many variables as possible are held in reg-
isters. To achieve this, specialized algorithms for register allocation
are used, based on e.g. graph coloring problem [3].

Listing 4 Selected parsing rules for MiNiK with their semantic actions.

Program
 : Functions { program = *$1; delete $1; };

Identifier
 : TIDENTIFIER
 { $$ = new Ast::Identifier{*$1}; delete $1; };

Statements
 : Statement { $$ = new Ast::Statements{$1}; }
 | Statements Statement { $1->push_back($2); };

FunctionCall
 : Identifier TLPAREN Arguments TRPAREN
 { $$ = new Ast::FunctionCall{$1->val, *$3};
 delete $1; delete $3; };

Expression
 : ExpressionAdd { $$ = $1; }
 | ExpressionAdd CompOp ExpressionAdd
 { $$ = new Ast::ExpressionBinary{$1, $2, $3}; };

Listing 5 shows conditional statement represented as a fragment
of AST. Two main parts can be isolated: binary comparison Ast::Ex-
pressionBinary: ‘a > 10’ and Ast::Assignment: ‘a := reduce(a)’.
Further analysis of Ast::Assignment shows that result of call of ‘re-
duce’ function is assigned to variable a.

Note that tokens like ‘if’, ‘(‘, ‘)’ ‘{‘, ‘}’ or ‘:=’ are not represented
explicitly in the AST. Their presence can be derived from the type of
AST’s nodes or AST’s structure.

Listing 5 Fragment of AST which represents following MiNiK code:

if (a > 10) { a := reduce(a) }

<IfStatement>
 <ExpressionBinary>
 <ExpressionAtom>
 <Identifier> 'a'
 <Operation> '>'
 <ExpressionAtom>
 <Integer> '10'
 <Assignment> 'a'
 <ExpressionAtom>
 <FunctionCall> 'reduce'
 <Arguments> 'a'

Translation of functions is done according to a memory model. First-
ly, generated assembly reserves space for local data (part of acti-
vation record). Calculation of off sets for function’s arguments and
local variables is facilitated by StoreManager class. StoreManager
associates memory cell with a variable, if and only if it is visible in
a currently compiled scope. As a next step, every statement of the
function is translated. At the end return value is stored in EAX regis-
ter and activation record is released and control is returned to call-
er’s site.

Next element worth attention is the while loop. It is translated in
three main steps, supplemented by appropriate labels, comparison
and jumps:

• Translation of expression which forms loop condition
• Translation of condition itself
• Translation of while block statements

Conditional (if) statements are translated analogously to while
statements with one diff erence: looping jump (jmp .LN) and its cor-
responding label are not needed.
Generation of assembly for function call comprises of three steps:

• Pushing arguments onto the stack in conformance with memory
model

• Calling the function via call instruction
• Releasing the stack space occupied by arguments passed to

function

2.6. Code generation
Translation to assembly code is the fi nal step of MiNiK compilation
process. To make it universal and possibly close to real-world sce-
narios, MiNiK compiler generates x86 assembly [6]. It is produced by
visiting AST nodes recursively by CodeGen class.

MiNiK language constructs are translated to assembly blocks.
A block is a list of assembly instructions and, if necessary, a label
is assigned to the block to allow making the references needed for
jumps. All generated blocks are arranged into a sequence which rep-
resents compiled MiNiK program.

First phase of compilation is traversal of all ASTs in order to collect
information about functions. Number of their arguments is remem-
bered and size of activation record is calculated. This calculation
is done during the traversal of function’s AST. Additionally, func-
tions’ names are saved and symbolic functions’ names are gener-
ated. Symbolic names diff er from original names in order to avoid
collisions with the already used names in system libraries. Second
phase is also a top-down traversal of ASTs, but this time assembly
is produced.

Expressions are basic building blocks in MiNiK. Since they can be
composed to create another expression, code generation process
has to be able to build arbitrary levels of nested expressions. What
helps now is the convention which tells that every expression has
to leave its resulting value in EAX register. This way, scheme shown
in Figure 3 is enabled. The scheme can be nested, treating every
expression as a black box.

Figure 4 Code generation scheme for MiNiK’s while statement. Figure 3 Code generation scheme for composing of MiNiK’s expres-
sions.

<<expr_1>>
+
<<expr_2>>

<<expr_1>>

<<expr_2>>
pushl %eax

popl %ebx
addl %ebx, %eax

MiNiK code: Generated x86 assembly:

while (<<expr>>)

{

 <<statements>>

}

<<expr>>

<<statements>>

.LN:

cmpl (%esp), %eax
jCC .LM

.LM:
jmp .LN

MiNiK code: Generated x86 assembly:

Nokia Shaping the future of telecommunication. Check how the experts do it. 119Nokia Shaping the future of telecommunication. Check how the experts do it.118

3. Next steps
Both MiNiK language and its compiler can be further developed. This
could be a great exercise to someone who would like to gain some
practice in writing of a compiler.

For example, the language lacks the following features:

• Possibility of passing expressions as function’s parameters
• else-if and else conditional statements
• Other kinds of loops (do-while, for)
• Global variables or constants
• Other data types, e.g. double or string
• Pointer types
• Exceptions
• More extensive standard library

In the compiler, the following features can be implemented in the
fi rst place:

• Register allocation algorithm
• Basic optimizations, e.g. avoiding of unnecessary pushes or

comparisons
• Generation of intermediate code during compilation, e.g. three-

address code

4. Conclusion
Hopefully, after reading this article, you are familiar with basics of
compiler’s construction. However, you have to remember that de-
scribed compiler, although fully-functional, is a very simplistic one
and MiNiK language lacks elementary functionalities. However, div-
ing into MiNiK’s code, experimenting with it and implementing new
features could be the beginning of Quest for Dragons [7].

Resources
[1] Nielson F., Nielson H. R., Nielson, C. H., Principles of Program

Analysis, Springer, 2004.
[2] Nokia Book’s source code repository, Nokia.

Available online: https://github.com/nokia-wroclaw/nokia-book.
[3] Aiken A., Stanford’s Compilers. Available online:

https://class.coursera.org/compilers-004.
[4] fl ex: The Fast Lexical Analyzer. Available online:

http://fl ex.sourceforge.net/.
[5] GNU Bison – The Yacc-compatible Parser Generator.

Available online: https://www.gnu.org/software/bison/manual/.
[6] Intel® 64 and IA-32 Architectures Software Developer Manuals,

Intel. Available online: http://www.intel.pl/content/www/pl/pl/
processors/architectures-software-developer-manuals.html.

[7] Aho A. V., Lahm M. S., Sethi R., Ullman J. D., Compilers: Principles,
Techniques, and Tools (2nd Edition), Addison Wesley, 2006.

As a wrap-up of this section, Listing 6 presents fragment of
MiNiK’s code with corresponding assembly code.

Listing 6 Assembly generated for simple MiNiK program.

function inc(a)
{
 return a + 1
}

function main()
{
 var a := 1

 while (a == 1)
 {

 a :=

 inc(a)

 }

 return a

}

 .text
 .global __MINIK_main
__MINIK_inc:
 enter $0, $0
 movl 8(%ebp), %eax
 pushl %eax
 movl $1, %eax
 addl (%esp), %eax
 leave
 ret
__MINIK_main:
 enter $4, $0
 movl $1, %eax
 movl %eax, -4(%ebp)
.L0:
 movl -4(%ebp), %eax
 pushl %eax
 movl $1, %eax
 cmpl (%esp), %eax
 jne .L1
 movl -4(%ebp), %eax
 pushl %eax
 call __MINIK_inc
 addl $4, %esp
 movl %eax, -4(%ebp)
 jmp .L0
.L1:
 movl -4(%ebp), %eax
 leave
 ret

2.7. Runtime environment
Minimalistic runtime environment and standard library has been
created, see the minikrt.c fi le.

The task of runtime environment is to call the MiNiK’s main func-
tion (which symbol name is __MINIK_main) and print the result
it returns. Standard library is composed of two functions: read
and write. The fi rst function allows reading integer number from
standard input. The second one writes passed argument to stand-
ard output.

About the author

I am working as a Software Development Engineer
in MBB FDD LTE C-Plane’s K3 project. In order to
facilitate testing of software components we are
creating compiler, runtime environment and tools for
Testing and Test Control Notation version 3 (TTCN-3)
programming language. TTCN-3 is standardized by the
ETSI and is aimed to provide well-defi ned syntax for
writing tests. In our daily work we are challenged not
only by C++ or Python quirks, but mainly by the tasks
related to creation of compiler for over a million-line
TTCN-3 codebase.

Michał Bartkowiak
Engineer, Software Development
MBB FDD LTE

Nokia Shaping the future of telecommunication. Check how the experts do it. 121Nokia Shaping the future of telecommunication. Check how the experts do it.120120

Professional Software Development

 Krzysztof Garczyński
Embedded Engineer
MBB System Module

Piotr Rotter
Embedded Engineer
MBB System Module

U-Boot: How Linux is Loaded
on Embedded Systems

1. Starting from the PC
Back in the day, Personal Computer users were often puzzled by
the word BIOS showing up during power up. However, few had the
courage to dig into what a Basic Input and Output System actually is
and what purpose it serves. As a matter of fact, people often fail to
realize that without a BIOS the PC will not start at all.

The primary role of a BIOS is to confi gure a computer to a point from
which the OS (Operating System) is able to start. The BIOS does not
know everything about the PC, neither does the OS. They both rely
on each other to do their job. The BIOS covers all the initial basics,
and the OS deploys dedicated drivers to cover the details later on.
This description merely scratches the surface of computer boot
procedures, but it should just be enough to show how important
the topic of fi rmware is.

BIOS originated in the PC realm, which is defi ned by a family of well
known processors sharing a common architecture and a somewhat
limited extension capability. Typically a PC consists of a CPU and
a set of peripherals spread across the motherboard, interconnect-
ed using dedicated high speed buses. Commercials spare the de-
tails and simply list a processor, an amount of operating memory,
a graphics card model, and the amount of space available on a hard
drive.

Although the PC realm boldly advances with each hardware im-
provement, little has changed in its essence – the list of PC compo-
nents has stayed largely the same. The realm of embedded systems
is quite diff erent and requires a diff erent benchmarking system. For
instance there is no such thing as a CPU (Central Processing Unit) or
a single processor architecture because an embedded processor is
so much more than just a core and its raw power to compute. Most
of the peripherals are integrated into a single chip and there is no
possibility to replace them. It is even hard to enumerate them with-
out a dedicated map (currently also known as a Device Tree).

The term “embedded” covers an esoteric universe of devices. Thanks
to technologies such as System on a Chip, our world is swarming
with numerous processor confi gurations. Although the set of fea-
tures they present might seem similar, each of those devices comes
with its own distinct confi guration. One might say that they all have
a sense of uniqueness built into them, much like humans.

By now it should be evident that in terms of comparison, the SoC is
closer to a motherboard than it is to a CPU and therefore creating
a fi xed BIOS for each variant of confi guration is not a practical way
to go.
The concept to extend fi rmware along with the hardware seems
tempting but its fl exibility is often limited by the amount of free-
dom granted to proprietary solutions. The plain extensibility fails
in the case of truly custom systems. Needless to say, embedded is
synonymous to custom...

To open the door of an embedded realm one needs an “open” key.
The trick is not to allow users to design extensions but for users to
extend the extensibility itself. This is where Das U-Boot comes into
play.

2. Fancy features found in the silicon
After a few years with MIPS (Multiprocessor without Interlocked
Piped Stages), serving as the heart of Nokia System Modules, a deci-
sion was made to replace them with modern ARM based processors.
The number of devices running on ARM cores is constantly grow-
ing because of their well optimized and documented architecture
and scalability. Of course, these are not the only two advantages of
ARMs but documentation alone seems to grant interest and sup-
port from the open source community.

As opposed to the proprietary BIOS, U-Boot has easily accessible
source code and an extension fl exibility limited only by hardware ca-
pabilities. This degree of freedom is an absolute must because the
ecosystem of a core consists of peripheral circuits defi ned and im-
plemented by manufacturers using their own proprietary methods.
Unifi cation and supervision by ARM Ltd. applies only to the core. This
obviously leads to bugs and misunderstandings, which cause seri-
ous integration problems and frustration. Often the only way to go
around hardware problems is through software fl exibility. Bottom
line is that there is no single, common solution to boot up a new
device. This contrasts with PCs hosting a well known, common BIOS
and x86 architecture. If you take a closer look at some of the popu-
lar ARM development kits (e.g. BeagleBone or Raspberry Pi) you will
certainly notice that the common ground starts only after the Linux
kernel goes up.

Presumably this is happening because hardware vendors add parts
of silicon to adjust products to their share of the market. Some-
times it is just a workaround and sometimes a feature. A good ex-
ample is the BootROM, found in Texas Instruments devices, which
is responsible for setting up processor modes at a very basic level.
Usually, it is a selection of storage medium which contains user fi les
such as U-Boot and Linux image. After a power reset every CPU reg-
ister is set to a default value, so how is it that BootROM can know
which medium is connected and has to be selected? For example,
by checking which GPIO Pin (General Purpose Input/Output) is wired
to an additional resistor. Then the status of this pin is saved into
a confi guration register. When we know where to fi nd Bootloader/
operating system images, BootROM can take the next step and run
an external bootloader: U-Boot.

3. Das U-Boot
U-Boot is a standalone “bare-metal” application, created and main-
tained by DENX Software Engineering with a great support sys-
tem consisting of an open source community and device vendors.
U-Boot is a very low level piece of software with two phases of ex-
ecution. The fi rst one is responsible for the detection and initiali-

Nokia Shaping the future of telecommunication. Check how the experts do it. 123Nokia Shaping the future of telecommunication. Check how the experts do it.122

The start up and confi guration of U-Boot deserves its own book;
however, so far the main focus has been on features which are not
visible to a typical user.

4. User interaction
One might think that we do not have access to U-Boot because we
do not see it. By default, a bootloader needs to stay hidden from
mere mortals to avoid panic and confusion. The Android phone us-
ers might consider it somewhat disturbing for their screens to show
arcane prints instead of a cheery spinning robot logo!

It is quite the opposite for embedded engineers – they love to see
what is going on under the hood at all times. Actually if it were not
for this exciting curiosity, we would have never enlisted for a job
in hardware interfacing. Perhaps this is the reason why we are not
scared off by the amount of wiring and sophisticated equipment on
our workbenches used to enter the world of embedded devices. This
kind of work is what makes us tick!

The break out wiring is key in the early stages of development be-
cause it is the practical medium we can use to take a peek at the
action going inside a circuit. Usually the fi rst thing which embedded
software engineers look for is the serial console. In case of headless
systems, which by defi nition lack a display, it is the serial console
which acts as the primary user interface.

Assuming we have set up a serial terminal (C-kermit is your best
friend), as soon as the system powers up, we should witness a steady
fl ow of messages coming from the bootloader. At some point it will
invite us to play around:

=> Hit any key to stop autoboot: 3

This is the moment we have been waiting for. With a single key-
stroke we can enter the U-Boot’s command line and start fi ddling
with all the tools previously enabled during build confi guration.
The fun does not end here – the fi nal chapter describes a way
to extend this command line interface with custom made com-
mands.

The command line is particularly useful for tweaking U-Boot envi-
ronment variables. These are typically kept in non-volatile memory,
making them good for storing persistent system confi guration de-
tails such as MAC (ethaddr) and IP (ipaddr) addresses, or the invoca-
tion of the Linux kernel (bootcmd).

The U-Boot environment uses a very fl exible format which allows
users to create new environment entries. To create and store a new
variable “foo” with the value “bar”, all you need to do is:

zation of externally connected RAM and using it to store the sup-
porting code (SPL – Second Program Loader). The second phase is
dedicated to confi guring diff erent peripherals required by the Linux
kernel to start e.g. network cards or memories. This stage is the
most important because U-Boot provides confi guration parame-
ters to the kernel depending on diff erent cases or requests. As it
was mentioned before, U-Boot also confi gures “external” peripher-
als such as ethernet switches. From Nokia’s point of view it is very
important because some information from other modules must be
processed and prepared before Linux is started. But that is not all.
U-Boot implements handling of basic and popular protocols like I2C,
SPI, or USB. List of supported drivers includes hard disks, basic API
(Application Programming Interface) for fi le systems, network pro-
tocols, and cryptographic API.

Lately U-Boot underwent a reorganization similar to the Linux rev-
olution in the 3.x kernel series. The new DeviceModel was intro-
duced which should standardize the way of implementing drivers
and accessing external peripherals. Previously, it was mentioned
that ARM CPUs fragmentation is quite painful. This is why the most
important directory in U-Boot is arch/ – where all of the source
code related to the specifi c architectures is stored. There we can
fi nd implementations for diff erent CPU architectures such as MIPS,
PowerPC, or even AVR32. In contrast to Linux, which introduced
a Device Tree model to handle the same kernel on diff erent hard-
ware setups, U-Boot still implements the old Linux mechanism of
Board fi les.

The main goal of a Board fi le is to implement a routine called
board_init_f. The fi rst lines are target independent and can be
found in crt0.S.n All it has to do is initialize the stack and memory
storage for a GD (Global Data) structure. But no matter what, GD
fi elds are not available yet. The Next phase is to call board_init_f.
Depending on the confi guration (with or without SPL) execution
fl ow might call other routines like board_init_r or relocate_code.
It is worth mentioning that U-Boot ships with default implementa-
tions of these procedures declared using the weak attribute (see
Listing 1).

Listing 1 board_init_f declaration.

void board_init_f(void) __attribute__((weak));

The weak attribute marks this symbol as a default one and can be
overridden by a developer (during the linking stage the default im-
plementation will be replaced).

but as we can see there is an additional step defi ned in this com-
mand, bootm, which will try to boot the operating system from the
passed in address. Copying data from SD card or fl ash to a specifi c
address in the memory is done by the fatload command. This solu-
tion is not so fl exible as we would expect because the fi le system
type must be known from the beginning. Fortunately development
kits with MMC are usually using FAT32 for storing fi les required by
U-Boot.

The next two lines are defi nitions directly responsible for booting
up Linux. The Ultimate command is bootcmd which calls uenvcmd,
but only when the latter is defi ned. Otherwise, a default action will
be called and for 99% of the cases it will not fi t to the “custom”
requirements resulting in a boot procedure failure. In this case, the
uenvcmd contains the code to copy data from the card into the
memory. This is the default procedure, executed when the waiting
counter reaches 0 and there is no interruption from the user. The
Bootargs variable is a set of parameters which are well known to
Linux users forced to modify their GRUB (GRand Unifi ed Bootloader)
on a x86 PC. Linux Kernel does not know where to fi nd its root fi le
system and where the startup scripts are stored. That is why we
have to pass all this information from a bootloader. It allows us to
prepare multiple booting scenarios depending on the conditions or
hardware confi guration.

When we reach the fi rst logs from Linux on our screen we can con-
sider U-Boot work to be fi nished. At this moment everything is in
the hands of Linux Kernel developers and we have to trust that their
drivers and software will fi nalize the hardware initialization stage.
This trust is mutual because with great power comes great respon-
sibility – the Linux startup is less painful when U-Boot does its part
properly.

6. How to start?
Work with U-Boot is not only focused on preparing variables and
scripts for Linux. There is still so much to be done regarding new
architectures, features, or even code cleanup. The motto “Every en-
gineer is eager to create something new” brings us to the following
short introduction on how to add a new command to the U-Boot
prompt. Please be aware that we will not describe how to prepare
crosscompiler tools and I assume that you, dear reader, know the
basics of the C programming language.

Command implementations are kept in fi les starting with cmd_*.c
located in the common/ directory of U-Boot.

What will our fi rst command do? As usual in the fi rst steps, it will
print “hello world” to the serial console. Let us start with the code
and then proceed to the explanation.

=> setenv foo bar
=> saveenv

The saveenv call is required to write the environment back to per-
sistent storage. To “print” the environment entries, all you need is:

=> printenv

The ultimate goal of using U-Boot is to pass the system confi gu-
ration through the environment variables to the Linux kernel invo-
cation. This, however, does not limit the possibilities that go with
a simple yet fl exible environment format. The U-Boot distribution
contains an example userspace application called fw_printenv which
can be used to access the environment from Linux. U-Boot can pass
data not only to the device drivers, the Service Manager, or the
operating system’s own init scripts – it can pass data to whichever
component that might need it!

5. U-Boot environment
Because U-boot came with the Swiss army knife DriversModel for
diff erent devices and protocols, it brings us multiple scenarios for
booting the Operating System. One of the most popular solutions
is a MMC (Multimedia Card) or fl ash. All we have to do is create and
put uImage into the SD card and point U-boot to it. We can do this
each time manually but, as we know, engineers are people who want
to keep it simple (KISS rule) and less susceptible to the reset but-
ton. Users who have had a chance to work with development kits
are familiar with the uEnv fi le. This is a so called confi guration script
for U-Boot. It can be used to defi ne new variables or command se-
quences to be executed by U-Boot.

On Listing 2 below, we have a short example of uEnv.txt content
from BananaPi development kit.

Listing 2 BananaPi uEnv.txt.

aload_script=fatload 0:1 0x43000000 /script.bin;
aload_kernel=fatload 0:1 0x48000000 /uImage;bootm 0x48000000
uenvcmd=run aload_script aload_kernel
bootargs=console=ttyS0,115200 consoleblank=0 console=tty0
disp.screen0_output_mode=1280x720p60 hdmi.audio=1 root=/dev/sdc1
rootfstype=ext4 elevator=deadline rootwait

The fi rst two lines of Listing 2 defi ne where U-Boot will fi nd the
binary confi guration fi le for BananaPi periphery and memory
address where data will be copied. The same applies to uImage,

Nokia Shaping the future of telecommunication. Check how the experts do it. 125Nokia Shaping the future of telecommunication. Check how the experts do it.124

command should be available (BOOTD or environment) or whether
it repeats the last command or not. Finally, argc and argv are argu-
ment handlers with the same purpose as it is in normal C programs.
As we can see, U-boot also implements basic operations well known
from userspace programming as printf (strings operation routines
are also available).

But how about the U_BOOT_CMD macro? It simply fi lls up the prop-
er fi elds in the structure which will be stored in the U-Boot internal
commands list. Here, we have to give a unique name (for list only)
and name of the command which will be called from the console.
There are also two integer parameters: the fi rst tells U-Boot how
many maximum parameters to expect (at least one because of the
command name) and Boolean describing whether the command can
proceed to autorepeat. We certainly do not want an autorepeating
command that does fl ash writes!

As you can see, there is no sorcery here. Of course, advanced fea-
tures require much more work and the use of diff erent parts of the
U-Boot source code. But, it is hard to describe everything in such
a short article. We have to dig deeper into it, as we engineers love
to do!

Listing 3 Hello world example.

common/cmd_hello_world.c:
#include <common.h>

static int hello_print(struct cmd_tbl_s *tbl, int flags,
 int argc, char *const argv[])
{
 printf("Hello world in our modified u-boot!\n");
 return CMD_RET_SUCCESS;
}
U_BOOT_CMD(hello_print, 1, 0, hello_print,
"Short help description", "Long help description:
Hello world test");

Every command has a specifi c list of parameters as seen in Listing 3.
The fi rst one, tbl, points to a structure responsible for storing com-
mand attributes which are set up by the U_BOOT_CMD macro. The
Flag variable is only responsible for telling U-Boot in which area this

About the authors

This piece was contributed by a group of engineers
from the Linux From Scratch team. The authors spend
their daily time maintaining U-Boot, but when the time
comes and a new prototype emerges, they jump out of
the routine to balance on a bleeding edge of software
and hardware. Living on the silicon edge is what brings
joy to their lives and drives them. Their work provides
an ecosystem for other teams and lays the foundation
for Nokia’s most daring technologies.

Krzysztof Garczyński,
Piotr Rotter
Embedded Engineers
MBB System Module

Nokia Shaping the future of telecommunication. Check how the experts do it. 127Nokia Shaping the future of telecommunication. Check how the experts do it.126126

Professional Software Development

 Łukasz Grządko
Senior Engineer, Software Development C++
MBB FDD LTE

Tuning the Algorithms
for Bin Packing Problem

Problem statement in Telecommunications Network Planning
Two practical network problems presented in this article are com-
monly known as Bin Packing problem.

The fi rst issue concerns the licensing in the WCDMA network. Let us
consider High Speed Downlink Packet Access (HSDPA) and HSUPA
(U for Uplink) schedulers. They have dedicated licenses that are called
HSDPA/HSUPA BTS processing sets. Each set allows certain amount
of HSDPA/HSUPA users and throughput to be allocated. Each license
is paid by the customer who wants to keep costs as low as possible.
Since each user requires HSDPA/HSUPA resources, as many users as
possible should be allocated to a minimal number of processing sets.

The second issue concerns optimized access network selection in
a combined Radio Access Technology (e.g. WLAN, LTE, UMTS, GPRS)
environment [6, 7]. Multimode terminals equipped with multiple RAT,
are becoming increasingly popular. The procedure of effi cient, suitable,
and scalable access network selection is gradually becoming an impor-
tant feature of heterogeneous wireless environments. This is the case
for the growing proportion of new handsets being equipped with more
than one RAT and wireless access networks of various types. The mo-
bile devices vary in characteristics (e.g. communication range, power
consumption) and Quality of Service (QoS) parameters (e.g. bandwidth,
delay). It is important to minimize UE power consumption in order to
improve QoS and ensure continuous connectivity.

These common problems are computationally hard therefore the
computer science focuses on various algorithms that are split to
two groups. The fi rst group gives us optimum results whereas the
second one cannot guarantee optimal solutions. Unfortunately, all
known exact algorithms have exponential time complexity as Bin
Packing problems are NP-hard [12]. However, the approximation al-
gorithms very often give acceptable results in a reasonable period
of time and therefore, are more practical. In this paper several ap-
proaches are shown to fi nd exact and approximated solutions.

1. Problem defi nition
There is given a set of n items of various size. The goal is to fi nd a
minimum number m of bins into which all items can be allocated.

More precisely:
 S = { w 1 , w 2 , …, w n } where 1 ≤ w i ≤ C for each i ≤ n and S is set of items
sizes (or weights) w i each. ∀ i (w i ∈ ℕ) , C ∈ ℕ .

Split S to S 1 , S 2 , …, S m where S i ⊆ S , for each i ≠ j, S i ∩ S j = ∅ ,
 ⋃ i=1

m S
i
 = S , ∑

 (w j ∈ S i) ≤ C and m is the minimal possible number. We

assume later that S is multiset.

There is also continuous formulation. In this situation we assume
 C = 1 for each bin and ∀ i (0 < w i ≤ 1) . We can transform the problem
instance from natural numbers to rational numbers, dividing each
weight and bin capacity by C . Thus if w i ≤ C then w i __ C ≤ 1 .

1.1. Integer Linear Programming (ILP) formulation
ILP problem is defi ned as minimization of product value c Τ x with con-
straints Αx ≥ b, x ≥ 0 . The Α is a matrix, c and b are vectors of known
integer coeffi cients. The optimum vector of integer variables x which
fi ts constraints needs to be found. This is computationally hard as ILP
is NP-hard. A Bin Packing problem can be transformed into a system
of linear inequalities and solved by known ILP methods [2, 19].

2. Exact algorithms
Few algorithms provide an optimum solution and their computa-
tional complexity is exponential in number of items.

2.1. Brute-force approach
First of all, the problem will be solved by determining all possible
item sequence. For each sequence items are consecutively allocated
to the bin. If the next item does not fi t, then it must be allocated to
a new bin. Each sequence of items is a permutation. For example,
let us consider a set {1, 2, 4, 7} and C = 7 . The feasible solution for
this permutation is depicted in Figure 1 . The number of permu-
tations to check is n ! _______ z 1 ! z 2 !… z k !

 , where z i means that i-th unique element
of permutation counts z i times. For multiset {1, 1, 1, 1, 5, 5, 5, 8, 8, 9}
there are 10 ! _______ 4 !3 !2 !1 ! (12600) permutations to check. For larger n ,
there are many possibilities that need to be checked. Let us imagine
that a computer checks 10 ! permutations per second. If we apply
 60 items there are 60 ! ___ 10 ! (~2.29 * 10 75) orderings per second to check.
This is equal to ~7.27 * 10 67 years.

Figure 1 Left side shows feasible solution for the permutation
{2,4,7,1}. Right side shows optimal solution for the per-
mutation {1,2,4,7} (see also 3.1.).

2

7

1 1

7
4

2

1

re
si

du
al

 c
ap

ac
ity

 =
 6

0

1

2

3

4

5

6

7

bin #1 bin #2 bin #3 bin #1 bin #2

4

Nokia Shaping the future of telecommunication. Check how the experts do it. 129Nokia Shaping the future of telecommunication. Check how the experts do it.128

optimum result. Each depth level of the searching tree is num-
bered by an item index. We start with the empty solution, i.e. no
bin is initialized and no item is used. The fi rst item is assigned
to the root node. At each node, the fi rst free item is consecu-
tively assigned to the feasible initialized bins (by increasing in-
dex) and to a new bin. Formally, a node contains (r 1 , r 2 , …, r b)
vector which denotes the current residual capacity of b bins
after allocating the fi rst i − 1 items. Suppose we try to pack
 i -th item. Each bin that is initialized in the current node we
branch to the descendant node with the following confi guration
 (r 1 , r 2 , …, r j − s i , …, r b) or branch to node with new b + 1 -th bin, i.e.
(r 1 , r 2 , …, r b , C − s i) . At each leaf node all items are packed and the
feasible solution is recognized. Fragment of algorithm implemen-
tation is depicted in Listing 1. After searching all feasible solu-
tions the best one is chosen. In Listing 1, residual is a list with a
residual capacity for each initialized bin. At each tree level if item
can be put to the bin and it has not yet been visited, then the
residual capacity is updated and the node in the tree is marked
as visited (function updateResidualAndVisit). When a leaf is found
then we search for another solution. In this case the node is un-
marked and the residual capacity is restored (function restoreRe-
sidualAndUnvisit). There is an example fragment of the searching
tree in Figure 2 .

Figure 2 An example fragment of the searching tree. Each node
follows the format index item, { r 1 , r 2 , …, r b } . Items
weights w i are: 2, 3, 3, 3, 4, 5, C = 10 . At level 4th, two
bins are initialized and four items have been allocated.

2.3.1. Branch and bound heuristics
Backtracking methods are based on exhaustive search to which
some bound heuristics may be introduced. These heuristics some-
times make it possible to fi nd a solution faster as it is not neces-
sary that all nodes or branches are visited. Before enumerating
the candidate branch solution, the branch is checked against up-
per and lower estimated bounds on the optimal solution [14]. If no
ideal solution for the branch can be found then we can leave this
sub-problem without solving it.

2.2. Dynamic programming algorithm
Suppose there is only a fi xed number r of distinct sizes of items.
Let dp [n + 1] [n + 1] … [n + 1] be the r dimensional array. A single el-
ement dp [z 1] [z 2] … [z r] is the minimum number of bins for packing
 ∑ i=1

r z i items with exactly z i items of size w i . Let F be the list of con-
fi gurations, i.e. a vectors (k 1 , k 2 , …, k r) so that the total packing
 k i ≤ z i item copies of size w i does not exceed the bin capacity. During
the fi rst step dp is set to 1 for each element from F onwards. During
the next step the dp is calculated for a larger number of necessary
bins. The recursive formula is as follows:

The number of diff erent confi gurations is at most O (n r) . Since r is a
fi xed number, the complexity is polynomial in n . The time complexity
of algorithm is bounded by (n + 1) 2r . The space complexity is O (n r) . In
practice, time complexity is bounded to ∏ i=1

r

 z i 2 . A dynamic program-
ming approach is more effi cient for very small r values. Otherwise it
is very time consuming. Supposing n = 200 and r = 10 then the time
complexity in a worst case scenario is (200 + 1) 20 . See in [4] for more
details.

Listing 1

int packItem(int index)
{
 int currentResult = INF;
 if (residual.size() == index) //we are in the leaf
 return numberOfBinsUsed(residual);
 for (int i = 0; i < residual.size(); i++)
 {
 if (!visited[index] && items[index] <= residual[i])
 {
 updateResidualAndVisit(i, index);
 currentResult = min(packItem(index + 1), currentResult);
 restoreResidualAndUnvisit(i, index);
 if (residual[i] == capacityOfBin)
 return currentResult;
 }
 }
 return currentResult;
}

2.3. Backtracking algorithms
Let us imagine search space as a rooted tree. Internal nodes have
a partial solution to the problem instance. Each leaf corresponds
to a feasible solution from which at least one leaf contains an

5,{5,0} 5,{5,4,6}5,{1,4}

6,{0,0} 6,{5,0,5} 6,{5,4,1} 6,{5,4,6,5}6,{0,4,6}6,{1,4,5}

4,{5,4}

 dp [z 1] [z 2] … [z r] =

0, if (z1, z2, …, zr) = (0, 0, …, 0)

1, if (z1, z2, …, zr) ∈ F

min {1 + dp[z1 – k1][z2 – k2] … [zr – kr] : (k1, k2, …, kr) ∈ F}

2.3.1.5. Bin Completion (Korf)
Similarly, bin completion is branch and bound algorithm, but search-
es diff erent problem space. Rather than considering each item in
turn, we consider each bin in turn [16].

3. Approximation algorithms
All previous algorithms have exponential complexities which are
impractical for a larger number of items. Therefore it is suggested
to use approximation algorithms which have polynomial time com-
plexity. Their accuracy is usually acceptable in practice. We show
three greedy on-line algorithms [13], their improvements when in-
put data is off -line and asymptotic approximation schemes. We also
introduce the notion of OPT which denotes the optimum solution.

2.3.1.1. Upper bound heuristic
Recall the Figure 2 . Note that we do not need to search through
nodes marked in gray, as they are a less favorable solution in com-
parison to the dark gray node, currently best upper bound.

2.3.1.2. Lower bound heuristics, L1 (Christofides and Eilon
algorithm)

Temporarily assuming that these items can be broken, each bin
(possibly not the last one) can be fully allocated. In this case, the
minimum number of required bins is a sum of all weights divided
by the bin capacity. Now we can introduce the lower bound formally
defi ned as L 1 :

 L 1 = [∑
j=1

n
 w j __ C]

If a feasible solution is equal to L 1 then we can terminate the algo-
rithm. Recall dark gray node in Figure 2 for an example. Since the
weight sum is 20 , then L 1 = 20 __ 10 = 2 . Eilon and Christofi des [5] present
a backtracking algorithm based on the following strategy. Assuming
that j bins at any node have been initiated let (r 1 , r 2 , …, r j) denote their
current residual capacities in increasing order and r j+1 = C for unini-
tialized bin. The branching phase consecutively assigns the free larg-
est item to bins: s ≤ i ≤ j + 1, where s = min {h : 1 ≤ h ≤ j + 1, w j ≤ r h } .
Lower bound L 1 is used to fathom the nodes. Despite this bound sim-
plicity, L 1 can behave well when experiencing problems with weights
that are small in respect to the bin capacity.

2.3.1.3. Lower bound heuristics, L2 (Martello and Toth algorithm,
Korf improvement)

For problems with larger weights, Martello and Toth propose the bet-
ter bounds, i.e. L 2 and L 3 . They are more eff ective than L 1 bound and
solutions are found earlier as longer branch searches are avoided.
The idea of L 2 is to add an estimate of the total bin capacity that must
be wasted during any solution, before dividing it by the bin capacity. If
items are sorted in descending order of their weights, L 2 can be com-
puted in amortized linear time O (n) . Notice that at any decision node,
some bins are initialized and each bin has some residual capacity. This
must be taken into account during computation of L 2 . In addition to
unallocated items, we add new b items of weights C − r b for each of
b initialized bins. The overall Martello’s and Toth’s algorithm is based
on “fi rst-fi t decreasing” strategy where the items are initially sorted
in non-ascending weights [5]. Because the Martello calculation is very
complex, Korf off ers a more intuitive approach [16].

1.3.1.4. Dominance criteria (Martello and Toth)
When the current item i is assigned to the bin b and r b ≤ (w i + w n) this
assignment dominates all the assignments of items (called domi-
nated) j > i which prevents the insertion one or more further items
to bin b . Such assignment closes bin b . There are conditions that
cause the bins to reopen [5]. This criteria fi lters-out the additional
branches during the search.

Figure 3 The branch and bound search. Each node has a nota-
tion: w, b , i.e. w denotes the item’s weight, whereas
b denotes bin’s number. Items weights are: 6, 6, 3, 3, 3,
2, 2, 2, 2, 1, C = 10 .

6,1

6,2

3,1

3,3

3,3

2,2

2,2

2,32,3 2,4

2,32,4 L2=4 cut

1,11,1

1,5 upper

3,2

3,3

2,3

2,3

Nokia Shaping the future of telecommunication. Check how the experts do it. 131Nokia Shaping the future of telecommunication. Check how the experts do it.130

Figure 4 The tree shows its content after inserting the items:
15, 7, 14, 4, 6, 2, 12, 10 in this order. The bin capacity
is C = 20 .

3.3. Best-Fit (BF) algorithm
BF is similar to FF except that it places item j in the bin i whose cur-
rent residual capacity is the smallest and w j ≤ r i . If no such bin exists
then a new bin is used. BF can be implemented in O (nlogn) using mul-
tiset sucture from std C++ library. A fragment of the implementa-
tion process is depicted in Listing 3.

Listing 3

int bestFit()
{
 std::multiset<int> S;
 for (auto const& item : items)
 {
 auto it = S.lower_bound(item);
 if (it == S.end())
 it = S.insert(C);
 int el = *it;
 el -= item;
 S.erase(it);
 S.emplace(el);
 }
 return s.size();
}

3.4. Improvement for NF, FF, BF
When we face offl ine algorithm, i.e. we are given all the data from
the beginning then we may always sort the items in non-increas-
ing order. Afterwards we use pure NF, FF or BF algorithm for such
sequences. In Figure 5 all three algorithms are presented. The
cost for FFD is at most 11 __ 9 OPT + 3 [2, 10, 11]. Compare this cost
with FF variant.

3.1. Next-Fit (NF) algorithm
After allocating the fi rst item to the fi rst bin we then process the next
item, followed by checking if it fi ts into the same bin as the previous
item. If it does not then we need to open a new bin. Sample C++ code is
depicted in Listing 2. Implementation operates in linear time O (n) and
constant space O (1) . It is proven that NF never uses more than 2OPT
bins [8].

Listing 2

int nextFit()
{//we assume there is at least one item
 //each weight does not exceed bin capacity C
 int nextbin = 1, residual = C;
 for (int i = 0; i < numberOfItems; i++)
 {
 readWeight(w);
 residual -= w;
 if (residudal < 0)
 {
 residual = C – w;
 nextbin++;
 }
 }
 return nextbin;
}

3.2. First-Fit (FF) algorithm
The diff erence to NF is that with each step the item that fi ts is put into
the lowest index bin or into the new bin. The straightforward approach
uses time O (n 2) . The fi rst idea proposed by Martello [5] is to use 2-3
Trees. These trees have dictionary operations (insertion, searching)
in time O (logn) and therefore, the whole algorithm has time O (nlogn)
complexity. However its implementation is complex [13]. In [1, 3, 17,
18] are simpler data structures described, i.e. Static Trees. Consider
the tree in Figure 4 . The number of leaves should be the smallest
power of 2 which is not smaller than number of items. Notice that the
tree is sometimes too big if the number of required bins is much small-
er than number of used items. The fi rst number in each node denotes
sequence number of a node. The second number in each leaf denotes
the residual capacity of each bin or, in case of the internal node, the
maximum value of its children. The sequence number of node v has a
nice property. Their sons have numbers 2v and 2v + 1 . The parent num-
ber is v / 2 . Therefore a tree of this kind can be easily stored in an array.
Consider again the tree in Figure 4 . Suppose we want to add new
item with a weight value 9 . The fi rst fi tting bin has a residual capacity
10 highlighted in gray. When the residual capacity is updated, all nodes
should be updated up to the root. It is known that cost of the solution
of FF is at most 17 __ 10 OPT + 1 .

3, 20

6, 20 7, 205, 84, 5

8, 1 9, 5 10, 6 11, 8 12, 10 13, 20 14, 20 15, 20

2, 8

1, 20

Notice that N is exponential in n and r . Karmarkar and Karp [2] dis-
covered algorithm which solves this LP within an error of at most 1
in polynomial time. The cost of approximation is at most O (log (s)) ,
where s is the sum of all weights of items.

3.7. Generating tests for FF
Several trials show that handy random weights of items do not af-
fect FF algorithm approximation error. An example of this kind of
“malicious” test case can be found in [8]. This example can be sim-
plifi ed however with loss of solution accuracy. Constructive proof is
shown which forces FF to use 3 __ 2 OPT bins. Consider items with ration-
al weight that does not exceed 1 . Imagine a sequence of 4M items
of size 1 __ 3 + ε followed by 4M items of size 1 __ 2 + ε . The optimal strategy
is to pack each pair (1 __ 3 + ε, 1 __ 2 + ε) into one bin. This requires 4M bins.
However FF allocates small items with a weight of 1 __ 3 + ε to 2M bins
and then large items that weigh 1 __ 2 + ε to additionally 4M bins. In total
FF requires 6 M bins. Now let’s transform rational weights into dis-
crete form. Since 1 __ 3 + ε + 1 __ 2 + ε ≤ 1 then ε ≤ 1 __ 12 . We may assume ε = 1 __ 12 .
Because 12 is divisible by both 2 and 3 then we multiply each weight
and bin capacity by 12 . As a result we obtain following input data:
 C = 12, S = {4 + 1, 4 + 1, …, 6 + 1, 6 + 1, …}

3.8. Generating tests for FFD
Generating test scenarios for variants with a descending order is
more sophisticated. The details are in [15].

4. Conclusions
Even though searching for an exact solution is a computationally
hard task fi nding a “good” approximation scheme requires more
detailed research. For larger number of items we may use paral-
lelized or distributed algorithms. In distributed environments (e.g.
grid, cluster, parallel supercomputer, nVidia/AMD GPUs) backtrack-
ing methods may be distributed to a number of processing units. In
particular we may choose k disjoint subtrees from the searching tree
and compute feasible solutions in parallel. Parallel approximation
algorithms also exist. For instance FFD can be computed in O (log (n))
using n ____ logn processors. See the details in [9]. In Table 1 we see the
results for seven test scenarios for each of presented algorithms.
If there is at least one number in cell, the fi rst one denotes an al-
gorithm solution. If the second number occurs, it is marked in: dark
gray for epsilon, blue for number of visited nodes, gray for num-
ber of permutations, light gray for number of iterations. N/A – 30
seconds timeout or out of memory occurred on Intel i3 2.5GHz with
1GB memory limit. Notice that the memory usage grows in A-PTAS,
for smaller epsilons.

According to conditions and factors (e.g. number of users, amount
of radio resources, etc.) we may apply combinations of exact and
approximation algorithms. It all depends on the size of the problem.

All the algorithms implementations, test generators and test cases
can be found in [20].

Figure 5 All three algorithms for the same descending sequence,
i.e. {6, 5, 4, 3, 3, 3, 3, 1} and C = 10 .

3.5. Asymptotic Polynomial Time Approximation Scheme (A-PTAS)
We sort items in descending order. Items are grouped into large
ones, i.e. w i > ε __ 2 and small i.e. w i ≤ ε __ 2 , where 0 < ε ≤ 1 . Larger pieces
are split into r groups. In each group all elements are adjusted to
largest element in this group. Suppose there are l elements in each
group. Then all l * r elements are packed by the dynamic program-
ming algorithm. Afterwards the FF algorithm packs small pieces,
possibly opening new bins [2]. The cost of this algorithm is at most
(1 + ε) OPT + 1 . Notice that dynamic programming algorithm output
is a single number, i.e. the minimal number of bins used. However in
this case we need to fi nd a detailed residual capacity for each used
bin as well. Using an additional array similar to dp , we might also fi nd
out which items are assigned to each bin.

3.6. Karmarkar Karp algorithm for Linear Inequalities
Suppose we have n items and among them are r distinct sizes. Let
F i = (k i1 , …, k ir) be the i − th confi guration (see section 3.1). For each
i ≤ N (number of confi gurations) we introduce a variable x i which
denotes the number of bins that have F i . Then integer programming
relaxation parameters can be defi ned as follows:

 c = [1 1 , 1 2 , …, 1 r] ,

 b = [z 1 , z 2 , …, z r] T,

 A =
⎡
 ⎢

⎣

 k 11

⋯

 k N1

 ⋮ ⋱ ⋮
 k 1r

⋯

 k Nr

⎤
 ⎥

⎦
 , x j ≥ 0 .

6
5

3 3

6
5

3

6
5

3

4

3
1

4

3

3

4

3

3

1

0

2

4

6

8

10

12

NFD FFD BFD

3
1

3 3

Nokia Shaping the future of telecommunication. Check how the experts do it. 133Nokia Shaping the future of telecommunication. Check how the experts do it.132

Number of items/algorithm 30 50 320 30200 random
48

random
70

random
1000000

Exact solution 15 15 96 9006 25 27 -

Brute-force 15
155mln NA NA NA NA NA NA

Backtrack,
UpperBound

15
135 NA NA NA 25

2mln NA NA

Dynamic programming 15
1028

15
866512

96
1bln NA NA NA NA

Christofi des and Eilon, L1 15
135 NA NA NA 25

2mln
27

179 NA

Martello and Toth, L2 15
135

15
819 NA NA 25

82175
27

179 NA

Martello dominance criteria 15
79

15
500 NA NA 25

2987
27

179 NA

NF 22 22 139 13009 34 35 135911

FF O (n 2) 22 16 102 9507 25 28 NA

FF O (nlogn) 22 16 102 9507 25 28 124776

BF 22 16 102 9507 25 28 124762

NFD 22 22 139 13009 30 35 134827

FFD 15 19 118 11008 25 27 124635

BFD 15 19 118 11008 25 27 124635

A-PTAS 18
0.38

18
0.5

113
0.88 NA 32

0.38 NA NA

Table 1 Results for seven test scenarios for each of presented algorithms.

Type of algorithm Time complexity Space complexity

Brute-force Exact O (exp (n)) O (n)
Dynamic programming Exact O (n 2r) O (n r)
Backtracking algorithms Exact O (exp (n)) O (n 2)
BF(D) Approximation O (nlogn) O (n)
FF(D) Brute-Force Approximation O (n 2) O (n)
FF(D) + StaticTree Approximation O (nlogn) O (n)
NF Approximation O (n) O (1)
NFD Approximation O (nlogn) O (n)
A-PTAS Approximation O (n 2r) O (n r)

Table 2 Complexities of each algorithm.

[11] D. Simchi-Levi “New worst case results for the bin packing
problem”

 [12] J. E. Hopcroft, R. Motwani, J.D. Ullman “Introduction
to Automata Theory, Languages, and Computation”

 [13] T. Cormen, C. Leiserson, R. Rivest “Introduction to
Algorithms”

 [14] http://en.wikipedia.org/wiki/Branch_and_bound
 [15] G. Dósa “The tight bound of First Fit Decreasing Bin Packing

Algorithm Is 11/9OPT + 6/9“
 [16] R. E. Korf “A New algorithm for Optimal Bin Packing”
 [17] F. D. Alves Brandao “Bin Packing and Related Problems:

Pattern based approaches”
 [18] https://www.topcoder.com/community/data-science/da-

ta-science-tutorials/binary-indexed-trees/
 [19] http://www.aco.gatech.edu/conference/focs-aco/Karp-lec-

ture.ppt
 [20] https://github.com/nokia-wroclaw/nokia-book/tree/mas-

ter/02/BinPacking

References and github resources
 [1] J. Radoszewski, „Wykłady z algorytmiki stosowanej”,

http://was.zaa.mimuw.edu.pl/?q=node/5
 [2] D. P. Williamson „Approximation Algorithms”, Lecture 2
 [3] D.S. Johnson “Near optimal bin packing algorithms”

Ph.D. thesis MIT, Cambridge, MA
 [4] M.R. Salavatipour, “Approximation Algorithms”, Lecture 7.
 [5] S. Martello, P. Toth “Knapsack Problems, Algorithms and

Computer Implementations”
 [6] K. Anderson, Ch. Ahlund “Optimized Access Network Selection

in a Combined WLAN/LTE Environment”
 [7] B. Xing, N. Venkatasubramaniam “Multi-Constraint Dynamic

Access Selection in Always Best Connected Networks”
 [8] S. Suri “Course Data Structures and Algorithms,

Approximation Algorithms, Bin Packing”
 [9] R.J. Anderson, E. W. Mayr, M.K. Warmuth “Parallel approximation

algorithms for Bin Packing”
 [10] B.S. Baker “A new proof for the First-Fit decreasing Bin

Packing problem” Journal of Algorithms 6, (49-70)(1985)

About the author

My computer adventure began at the age of 8 with
cousine's C-64 and Amiga 500. Just two years later
my own Amstrad CPC 6128 became a wide opened
gate for an exciting quest in programming simple
games in Basic language. I have participated in many
Maths and Programming Competitions and decided
to further widen and strengthen my math skills
by attending and graduating from Computer Science
in University of Wrocław.
I have interests that span the spectrum from theory
and mathematics to algorithms and data structures to
application and software. Currently I work as a Software
Development Engineer in LTE C-Plane. Our engineers
create solutions for the new challenges in LTE Mobile
Broadband technology using various of software tools
and programming languages, mainly C++11/14.

Łukasz Grządko
Senior Engineer, Software Development C++
MBB FDD LTE

Nokia Shaping the future of telecommunication. Check how the experts do it. 135Nokia Shaping the future of telecommunication. Check how the experts do it.134 135134

 Best Engineering
Practices

Tomasz Krajewski
Object-oriented Programming
Best Practices

136

Dawid Bedła
SOLID Principle – Finding the Root

142

Andrzej Lipiński
A Brief Introduction to the Software
Confi guration Management

148

Marcin Gudajczyk
Advanced Branches Utilization
in Subversion and Git

154

Tomasz Prus
From Customer Documentation to User
Experience

162

Maciej Kohut
Design for Security

170

4.1 4.2 4.3

4.4 4.5 4.6

Nokia Shaping the future of telecommunication. Check how the experts do it. 137Nokia Shaping the future of telecommunication. Check how the experts do it.136136

Best Engineering Practices

 Tomasz Krajewski
Software Developer
MBB System Module

Object-oriented Programming
Best Practices

The two most important values of software are correctness and
fl exibility. The former is achieved with tests (among other things).
The latter is important due to rapidly changing requirements.
It’s achieved with good code structure and high readability. This ar-
ticle is intended to show how to leverage a plethora of useful tech-
niques to make your code not only correct, but more readable and
easier to change.

1. Naming
We spend about 80% of development time reading the code [8]. This
is why high readability is mandatory. This is achieved by correctly par-
titioning your code. This will be explained later with proper names and
code identifi ers. All names should tell you exactly what the code does
and use correct parts of speech (see Table 1). Think about other
members of your team who will try to understand your intent. Make
sure your code is accessible for readers of all backgrounds [1,2].

Table 1 Parts of speech to use when naming.

Identifi er type Part of speech to use Example

class noun ProcessBuilder

method verb removeAll()

interface adjective Clonable

Example of poor names:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/MaxPrime.java

Example of good names:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/LargestPrimeCalc.java

The wider the function scope, the more general and shorter the
name should be. You should fi nd that your innermost, specifi c
functions will have long names that leave nothing to the imagi-
nation. E.g. in a political poll data processing logic, there could be
a function named calculateSupport(). Deep down the stack it
could invoke a function that looks like the following: evaluatePar-
liamentMandatesDistributionExcludingUncertainVoters().

2. Structure your code
The well known rule is that each function should have one task. So
what does this mean? Well, every time you read your function and
you’re able to use your IDE’s “Extract method” refactoring on a part
of your function – you have succeeded! You have just found a sub-
routine that doesn’t really belong to the method as it does some-
thing else. So you keep extracting those subroutines. Only when
you’re unable to extract any other function can you say that your
function does one thing [1,2].

If you’re dealing with really long methods, you’re likely to fi nd that
some parts that could easily form a separate class, as they have
completely diff erent responsibilities. These functions should be ex-
tracted and separated.

So how small can functions get? Ideally 4 lines or less. 6 is ok how-
ever, 10 is too much. How easy would it be to read? In four lines you
can’t fi t any if-else, switches, ‘try-catches” and ‘do-while” clauses.
All those statements would be moved to subroutines. This would
minimize the amount of indentations, further increasing readability.

Don’t worry about getting lost in a vastness of thousands of tiny
functions calling other gazillion of even-tinier ones. As long as these
sentences are carefully named. Nowadays processors and memory
are so fast that you won’t notice the delays introduced by calling
multiple small functions (unless you’re working on a critical part of
a real-time application) [1,2].

One more thing you should notice when extracting is that your func-
tion arguments should be at a similar level of abstraction. General
public functions should operate based on high-level business log-
ic objects. Low-level functions usually deal with low level concepts
such as fi les, arrays of numbers, web sockets etc.

Consider the following code. Its purpose is to accept sentences from
console and print basic statistics about those sentences. It’s an ex-
ample of code deprived of any structure:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/StatsGame.java

Note that various responsibilities are crammed into one method.
I/O, processing, formatting, game fl ow are all mixed up. Any aspect
of the application that would like to change is related to the Stats-
Game module. The module will change a lot and grow very rapidly.

Now consider this refactored code:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/StatsGameRefactored.java

Changes applied here involve renaming and extracting constants,
variables, methods and repeating pieces of code. IO mechanism
was extracted to the ConsoleIO class, as it has nothing to do with
the game itself. And interface Talkative for IO was created. Logic
that processes sentences was moved to a separate class Sentence-
Processor. Separate exception classes were created, for readability
and easier testability.

Yes, there are more lines of code here. But note that every method
is small and easy to read and responsibilities have been separat-
ed. Developers can work on modules independently, free of con-
fl icts. Also, with just a little modifi cation, ConsoleIO and Sentence-
Processor can be injected into the SentenceStatsGame, which will

Nokia Shaping the future of telecommunication. Check how the experts do it. 139Nokia Shaping the future of telecommunication. Check how the experts do it.138

Are comments a good solution? One the one hand comments can
provide vital information however, on the other instead of explaining
what part of the code does, you should just give meaningful name to
that part. Additionally, the comment easily becomes obsolete when
the code being commented changes. Therefore comments are not de-
sired. The code itself should indicate what it does. If you need a com-
ment to explain the code, then the code needs to be rewritten [1,2].

4. TDD basics
Test Driven Development is a process that consists of three consec-
utive steps repeated over and over again (see also Figure 1):

1. Write a unit test that fails (compile error is also considered as
failed).

2. Write code that passes the test. But write as little code as it’s suf-
fi cient for the test to pass.

3. Refactor your code if necessary.

Figure 1 The fl ow of TDD.

TDD is a technique that – if applied correctly – is guaranteed to cover
100% of your code and 100% of use cases.

Sounds impossible? It can, at fi rst. But consider this. Do you like
writing unit tests? Most developers I know don’t. Have you covered
all cases with a set of well written unit tests that you spent a long
time preparing? Do you feel protected by those tests? Would these
tests detect bugs that you might introduce to your code?

What almost always happens is that even a large suite of carefully
written tests doesn’t protect you very well from errors. You write
tests when you’re fi nished with implementation, so you already
know that the code works. It is impossible to think about all the test
case scenarios. Not to mention that it’s dull.

This is not possible in TDD. Also, you will never write code that isn’t
testable, especially code that produces side eff ects such as the
method add(a, b) that not only returns a sum of a and b, but also

make it much easier to test. If you aren’t familiar with dependency
injection, you can read about it in [14].

Using the Talkative interface has a fundamental advantage. The
underlying IO mechanism implementation is irrelevant to the Sen-
tenceStatsGame. It means that not only can ConsoleIO be easily
changed, but also that it can be replaced entirely, for instance by An-
droidWidgetIO. The SentenceStatsGame would be fully operational.

Similarly, if for example a game designer decides that mathemati-
cal expressions should also be evaluated then an interface for input
processing can be introduced. Next, the sentence processor and the
newly created MathExpressionProcessor will both implement that
interface. After that, adding processors for other types of data will
be as easy as adding new Talkative implementations which is the
idea behind the process. Flexibility, allowing programs to adapt to
customer needs [1,2].

3. Form
How many arguments should a function have? The more arguments
there are, the more complex the function gets, and the more ways
there are for it to behave. Therefore it’s best that your functions
have no arguments. Consecutive function calls would then read like
a prose, wouldn’t they? Of course you have to pass some arguments
every now and then, but fewer is better. Three arguments is the
(barely) acceptable maximum [1,2].

But what kind of arguments are acceptable? Any kind is certainly
doable. But think about booleans. Consider such a method:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/FilesReporter.java

Would you extract anything from the listFiles function? Of
course, the code inside the if statement and the code inside the
else statement. So the listFiles function really consists of two
functions. Therefore it is best to delete this function and create
listFilesNonRecursive(String folderPath) and listFilesRe-
cursive(String folderPath). Actually in the end these two meth-
ods would go into two separate classes that implement an interface,
but that’s a topic for another article.

So, using boolean arguments this way is a huge mistake. Usually the
same goes for enumerators, which indicate forthcoming complica-
tions. Such enumerators almost always can be changed into poly-
morphic constructs.

The whole team should agree to use the same coding convention.
When a team member reads the code, they should be unable to tell
who wrote it based on the style used. That helps the code to be
predictable. For example, you could agree to use the same code
formatter. This kind of formatter dictates indentations, number of
empty lines, maximum line width, etc.

PASSREFACTOR

FAIL

An example of a poorly cohesive class: A class that adds a user
to a database. Its methods: createUser(String email, String
password), saveUserToDatabase(), printTransactionResult().
Three functions that have very diff erent purposes: database oper-
ations, creating database objects and reporting operation results.

Here is one observation that could be helpful when determin-
ing cohesion compliance. It’s how functions use fi elds. If every
function uses all fi elds, it’s very likely that we’re dealing with high
cohesion. But if, say, three functions use a set of fi elds that the
other two functions do not use then perhaps those two kinds of
functions are not focused on the same purpose. There are met-
rics for cohesion (like LCOM4 for Java) although the notion itself
is subjective.

Coupling is a degree to which one class knows about another
class. If changes in one class aff ect how another class works, those
classes are highly coupled. That is undesired as it makes it hard to
change single modules, because other modules that depend on it
will break.

Consider the following code, a part of College application.
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/College.java

If we decide to change a table to List in the Group class, the Stu-
dentsPerGroupStats won’t compile. Coupling takes its toll. In this
case, we should add the getStudentsCount() method to the Group
class. That way the data structure in Group will not depend on the
StudentsPerGroupStats class.

The refactored code:
https://github.com/nokia-wroclaw/nokia-book/blob/master/02/
OOP_best_practices/CollegeRefactored.java

6. DRY, KISS, YAGNI
DRY stands for Don’t Repeat Yourself. Whenever you hit that Ctrl+V in
the code, you may regret it later. It’s a signal that maybe some mod-
ule can be extracted and then reused. If you paste, you create more
code to maintain and to test. Remember: “Less is more”.

KISS means Keep It Simple, Stupid. As Albert Einstein said, everything
should be as simple as possible, but not simpler. Think about your
readers. Quite often tough problems remain tough for everyone
until they’re solved by someone who didn’t know it was tough. So
it’s possible that one of these days a rookie will come to your team
and will implement the same algorithm in a much simpler way. And
you don’t want that.

YAGNI is short for You Aren’t Gonna Need It. Plain and simple; don’t
write code that is not required right now. Don’t litter your applica-
tion by code that nobody needs.

prints something to the standard output or sends the result over
the network to a remote host. The TDD regime alone won’t allow it.

But the key benefi t is that tests written with TDD off er the ability
to enable developers to edit existing code and refractor it freely, as
the tests will detect if the code is damaged.

Suppose there is a method divide(double m, double n) we want
to test. It should return m/n. For the sake of example let’s omit is-
sues related to fl oating point precision. In TDD, we start with sim-
plest cases, easiest to handle:

1. Thinking about possible values of n, we come up with a test er-
rorWhenSecondArgumentIsZero(). The test will use the method
divide and will expect that 15.0/0.0 will throw an exception. The
test will fail. It won’t even be compiled.

2. Create a method divide(double m, double n) which throws the
exception that the test wanted. That’s the simplest thing possible
that makes the test successful. Make sure is passes the test.

3. The refactor step – nothing to do yet.
4. Write a test numberDividedByOneReturnsSameNumber(). The

test will expect that 15.0/1.0 = 15.0. The test will fail because the
divide method throws an exception.

5. In the divide method add an if statement before the throw
clause. if n==1.0, return m. That’s enough for the tests to pass.

6. Still there’s nothing to refactor yet.
7. Write a test divideNonTrivialNumbersReturnsCorrectResult().

Use the divide method a few times with a diff erent set of oper-
ands and appropriate results.

8. After that if statement add else if n!=0.0 clause. In else block,
there’s nothing we can do to make the tests pass except for writ-
ing the actual code, that returns m/n. The tests should now pass.

9. Finally we get to refactor. Observe that the if statement can be
removed and else if can be changed to if.

Surely this is a trivial example but even here we got our code cover-
age and all the use cases are also covered.

5. Cohesion and coupling
Cohesion is a feature of a class. It indicates a degree to which func-
tions of the class have single, well-focused purpose.
Examples of highly cohesive classes:

• Calculator, with the following methods: add(), substract(),
multiply(), divide().

• ProgressBar, with the following methods: reset(),
incrementByOne(), incrementPeriodically(long milisecs),
stopIncrementingPeriodically(), setToDone().

Cohesion pays off because such classes are easier to reuse across
various modules. Also, these type of classes are less frequently
changed, as they’re focused around just one purpose.

Nokia Shaping the future of telecommunication. Check how the experts do it. 141Nokia Shaping the future of telecommunication. Check how the experts do it.140

with this API, so the whole plain text measurement log
is parsed to find it”.

5. Scoundrel method signatures. Suppose there is a web browser
that has a module to debug websites. This module could have the
method addBreakpoint(file, lineNo), but the method has an
unusual side eff ect. If your breakpoints have been deactivated
previously, the addBreakpoint will in fact activate them! Anoth-
er common example is methods that don’t use their arguments.
Like displayWindow(topLeftVertex, size) that for some rea-
son ignore the given size and determines the actual size based
on the content in the window. Don’t ever allow method signatures
become deceiving.

6. Broken windows theory. It’s a criminology theory that describes
relation between the state of urban environment and the rate of
crimes. Preventing small crimes like vandalism fosters the sense
of order. That in turn makes people less prone to committing seri-
ous crimes. This theory also applies to software. If you keep your
code in order, others will be reluctant to corrupt it with some poor
code. On the other hand no-one will care about code that was
poorly written in the fi rst place.

9. Professionalism
Most projects in software development suff er from gradual yet
severe decrease in development velocity as the project matures.
It has often been the case that adding new code to a project
proved too diffi cult causing managers to decide to start the pro-
ject from scratch, only to experience the same problems a few
years later. This is caused by not caring about keeping the code
clean. Despite our obligations for timely delivery of our products,
we do not see this as our top priority. Poorly coded software has
caused many tragedies such as; car break malfunctions; space
shuttle explosions; patients being subject to fatal radiation levels
during therapy. Therefore it is our responsibility to our customers
to only provide software that is fi t for purpose. It’s a sign of a pro-
fessional, to tell people who has hired them what to do, not the
other way around. Your insight should determine how code should
work and if it’s ready to be delivered, not the deadlines that oth-
ers impose [3,11,12].

10. Summary
In this article we’ve only scratched the surface of creating clean
code. There are many more rules and good practices such as
SOLID principles [1,2], agile development and design patterns.
Unfortunately most of these can only be fully understood whilst
coding.

No rule is sacred though. Sometimes it’s a good idea to break
a particular rule, but only when there is a good reason for it. E.g.,
Even if there is a good reason to break the rules you do need to
understand inside-out in order to bend the rules without causing
repercussions [5].

7. Law of Demeter
This is also known as Don’t Talk To Strangers. This is how methods
rely on members of other classes. If a class A uses fi eld f from a class
B or invokes a method m() from a class C, it’s all good. We look at the
class A and we see right away it depends on classes B and C, so fi eld f
and method m() are “close” in terms of how many modules we have
to go through to get what we need.

On the other hand, if a class A reaches out for a fi eld f2 from class
B, to invoke f2’s method m7(), just to get the third object from a col-
lection that m7() returned and invoke toString() method on it…
Note how complicated it gets. Think about how tightly all modules
in that long chain of invocations are coupled. And how hard will class
A be to test [9].

There is no easy solution to when code violates the Law of Demeter.
In order to avoid this refactor your code, keep the cohesion high,
move code around through the modules until you fi nd one that has
the same purpose, encapsulate your variables, and utilize depend-
ency inversion [1,2]. All these actions lead to classes that are loosely
coupled, which usually makes Law of Demeter easier to follow.

8. Handy tips
Here are some hints coming from experience.

1. Reinventing the wheel is harmful. When coding, ask yourself how
likely is it that someone else already had to write code that does
that very same thing. If it’s possible, search both within your pro-
ject codebase and on the web. There might just be a class for that.
There might be a library for that. Examples for popular Java li-
braries: Guava, Apache Utils. The best code is the one you didn’t
have to write. Less is more.

2. Code coverage is useful, but only to indicate if you have forgotten
to test a specifi c part of the application. Getting 100% coverage
does not necessarily indicate that you have fi nished. Just analyze
your test suite to make sure that all the viable use cases are test-
ed. Note that you can get 100% coverage and not make a single
assertion, therefore testing nothing! That said, not all the code is
worth testing, e.g. getters and setters.

3. Util or Helper classes usually grow into a cluster of methods that
are unrelated. Developers looking for a place to add a new utility
method are likely to put it into this kind of bag. As the cluster
grows it becomes a point that many modules depend on. Instead
of feeding utils, try to fi nd a class that your method really belongs
to and put it there. Don’t forget to make it private, too.

4. Comment heavy wizardry. [13] As said in the chapter about form,
comments are wrong and this is generally the case except when
your code depends on third party modules that you’re forced to
use and are either unusual or buggy. In this case you can write an
explanatory comment, e.g. “//workaround due to this library
bug 7352”. Or “//no way to extract actual measurement data

 [8] http://blog.codinghorror.com/when-understanding-means-re-
writing/

 [9] http://haacked.com/archive/2009/07/14/law-of-demeter-
dot-counting.aspx/

 [10] https://sourcemaking.com/refactoring/bad-smells-in-code
 [11] http://www.devtopics.com/20-famous-software-disasters/
 [12] http://en.wikipedia.org/wiki/Sudden_unintended_acceleration
 [13] http://en.wikipedia.org/wiki/Deep_magic
 [14] http://www.vogella.com/tutorials/DependencyInjection/

article.html

References
 [1] Martin R., Clean Code: A Handbook of Agile Software

Craftsmanship, 2009
 [2] http://cleancoders.com/category/clean-code#videos
 [3] https://www.youtube.com/watch?v=p0O1VVqRSK0
 [4] Feathers M. – Working Eff ectively with legacy code, 2004
 [5] https://vimeo.com/43536417
 [6] http://www.planetgeek.ch/wp-content/uploads/2013/06/

Clean-Code-V2.2.pdf
 [7] http://www.slideshare.net/guest446c0/the-smells-of-bad-design

About the author

I’m a Software Developer in MBB SM SCM and
Automation. We provide tools, expertise and assistance
that help other teams within Nokia to develop and
test our products. One of our tools is an RCP-based
environment to write automated tests using a script
language we designed for that purpose. Another
example is a tool for analyzing network traffi c that
extracts desired data based on a set of parsers and
fi lters. We care about quality of our software and it
pays off with the ability to implement new features
quickly, even for mature products.

Tomasz Krajewski
Software Developer
MBB System Module

Nokia Shaping the future of telecommunication. Check how the experts do it. 143Nokia Shaping the future of telecommunication. Check how the experts do it.142142

Best Engineering Practices

 Dawid Bedła
C++ Software Developer
MBB FDD LTE

SOLID Principle – Finding the Root

1. SOLID short description
SOLID is one of the most popular acronyms in the world of Object
Oriented Programming. Popularized by Robert C. Martin in the early
2000‘s, the acronym stands for Single responsibility, Open-closed,
Liskov substitution, Interface segregation and Dependency inver-
sion principles. These rules should be well-known by programmers
who want to write high quality code.

1.1. Single responsibility principle
The single responsibility principle describes class and method as
elements which have a dedicated task. Therefore we assume that
class has only one reason to change itself. Class focuses on success-
fully completing a specifi c task. This makes the interface easy to use
and understand. In other words, all classes and interfaces should be
short while the method should contain only a few lines and all used
names are as verbose as it is possible. This makes code easier to
read and maintain in the future.

1.2. Open-closed principle
The open-closed principle dictates software to be closed for mod-
ifi cation and opened for extensions. Following this principle, the
class should not change defi ned behaviors. Adding a new feature is
easy and has almost no impact on already implemented code. It is
achievable by properly distributing functionalities. This can be done
by putting functionalities in dynamic libraries with well-designed
interfaces. Single libraries can be easily updated when the func-
tion’s behavior needs to be changed or extended without recompil-
ing the whole program.

1.3. Liskov substitution principle
Liskov’s substitution principle is a fundamental rule.

Functions that use pointers or references to base classes must be
able to use objects of derived classes without knowing it.[2]

This sentence describes how polymorphism works. Polymorphism
is the method of changing the behavior of our code by injection of
a new class that implements the interface in a diff erent way.

1.4. Interface segregation principle
The interface segregation principle indicates to whom the interface
belongs to. Previously the interface was attributed to the class that
implemented the interface, now it is the class that uses the inter-
face as gateway to the external code. The module defi nes the way of
communication with themselves. This means that the module knows
what and how the way of communication can be changed e.g. which
part of functionality can be injected (data source, data presentation
layer, detailed algorithm implementation) and what is core function-
ality which should stay unchanged.

1.5. Dependency inversion principle
The dependency inversion principle dictates that code becomes
independent from concrete class implementation but instead
dependant on interfaces. It makes code easy to reuse in other
projects or libraries. It is possible when external code cooperates
with library/framework via well defi ned and documented inter-
faces.

2. The root
Polymorphism is The Root of all SOLID principles. A well designed
polymorphic interface makes it possible to write code that is easy to
extend and maintain.

Virtual functions are language constructions that implement poly-
morphism, this conception is available for free in some object ori-
ented languages (C#, C++). From a programmer’s point of view, it
only requires an extra keyword during defi nition. Polymorphism is
so important and such a basic functionality for object oriented pro-
gramming languages that some of them (Python, Ruby, Objective-C,
Java) make all functions behave like virtual functions. There are two
main ways to implement polymorphism: virtual table of pointers to
functions and sending message to object.

3. Good abstraction
Now for an example that shows how good abstraction makes code
fl exible. Consider the following problem: “Write a module which
read, process and present data”. This is quite a standard problem. It
is easy to extract three basic functionality by reading data, process-
ing data, presenting data. On closer inspection, we can also fi nd out
that core functionality is processing data. Reading and presenting
are the parts of the code that will be probably modifi ed in the fu-
ture. While writing the module it will be useful to mock or inject own
implementation of these operations.

Now when problem analyses is fi nished it is time to make some
concrete assumption about input data, the way of presentation
and processing. Let’s say that data is a simple collection of in-
tegers which can be read in grouped portions. Processing is the
operation where for every single input number we get one recal-
culated output number. Presenting the data procedure present
data to the user or making it available to further processing. At
this point the programmer has a lot of information about what
the application should look like. Unfortunately there are no de-
tails necessary to write specifi c code. There is no information on
how data is provided: from fi le, external device like sensor, read
from network or user provide data from keyboard. The process-
ing description is still missing calculation detail (math equation or
other transformation parameter). Polymorphism allows the code
presented on Listing 1.

Nokia Shaping the future of telecommunication. Check how the experts do it. 145Nokia Shaping the future of telecommunication. Check how the experts do it.144

Listing 1 shows how important the proper usage of polymorphism
is. In this case business logic is simple and can be kept in one place
(Applicatnion::runApp). In more general situations, business logic is
much more complicated and distributed through many classes. In-
terfaces make separate work on business logic code and implemen-
tation code possible(which also can be extremely complicated). This
approach is very convenient during all stages of software lifetime.

4. Polymorphism in various languages
This paragraph describes how diff erent languages implement pol-
ymorphism.

4.1. Duck typing
It is time to discover language implementations details. At the be-
ginning we will see why duck typing allows programmers to use all
functions as virtual functions. The description is based on Objec-
tive-C implementation (it is syntactical most interesting language)
but it is very similar to languages like Ruby or Python. Consider code
presented on Listing 2.

Listing 2

[instance method:argument];

This is basic construction for calling the method by class object
instance. The name instance represents an instance of a specifi c
class, method represents the method name for class and argument
represents the parameter passed to the function call. Objective-C
is a language with named parameters. The function calls are unusual
due to them having multiple parameters. See some real example on
Listing 3.

Listing 3

//declaration
- (void)drawCircleAtPoint:(CGPoint)p
 withRadius:(CGFloat)radius
 inContext:(CGContextRef)context;

//call
 [instance drawCircleAtPoint:midPoint
 withRadius:size
 inContext:context];

Character “-” in front of method name indicates a standard class
method (“+” indicates a static class method). By looking at the decla-

Listing 1

struct DataSource {
 virtual std::vector<int> readData() = 0;
 virtual ~DataSource() = 0;
};

struct DataPresenter {
 virtual void presentData(const std::vector<int>&) = 0;
 virtual ~DataPresenter() = default;
};

struct DataModifier {
 virtual std::vector<int> recalculateData(
 const std::vector<int>&) = 0;
 virtual ~DataModifier() = default;
};

struct Application {
Application(DataSource& ds,
 DataPresenter& dp,
 DataModifier& dm,
 std::function<bool()>stopMethod) :
 dataSource(ds),
 dataPresenter(dp),
 dataModifier(dm),
 stop(std::move(stopMethod))
 {
 }

 void runApp() {
 while(!stop()) {
 auto data = dataSource.readData();
 auto dataAfterModifications =
 dataModifier.recalculateData(data);
 dataPresenter.presentData(dataAfterModifications);
 }
 }

private:
 DataSource& dataSource;
 DataPresenter& dataPresenter;
 DataModifier& dataModifier;
 std::function<bool()> stop;
};

The presented code allows to separate application logic from im-
plementation details. Information about concrete implementation
of DataSource, DataPresenter and DataModifi er has to be provid-
ed only in one place. For this application, it will be a main function
where instance of Application class is created.

value during the debugging phase. This special member contains
a list of pointers to virtual functions of a current object. All calls of
virtual functions are done via v-table, so even when using a pointer
or reference to base class the address of the function is taken based
on runtime instead of compilation time data. A v-table is not directly
accessible for programmers however it is still possible to change its
values. Very often this is the source of serious problems (Listing 5).

Listing 5

struct A {
 virtual void f() {
 std::cout<< "A::f()\n";
 }

 virtual ~A(){}
 int a;
};

struct B : A {
 void f() override{
 std::cout<< "B::f()\n";
 }

 int b;
};

auto b = std::make_unique();
std::memset(b.get(), 0, sizeof(B));

std::cout << b->a << std::endl;
b->f();

On fi rst inspection everything seems to be in order. There are two
classes A and B. B is a subclass of A. A has a defi ned virtual method
f() and class B overrides this function. Class A contains a member
and class B since inherited from A contains a and b. Both classes do
not contain a constructor. So instead of writing a constructor which
initializes members it is possible to use a function typical for oper-
ations such as memset. It works for class members. Unfortunately
a v-table is also a member so memset sets all fi elds to 0. As a result
of the program calls virtual function the pointer is attributed with
the value null. This causes the program to crash.

5. Interfaces in design patterns
Almost all design patterns are based on hiding implementation de-
tails behind one common interface. This proves that polymorphism
is the most important feature of Object Oriented Programming
Languages.

ration and function call it is possible to split it by “:”. Everything on the
left side of “:” is the function name, on the right side is an argument.

Such construction forces the programmer to create more reada-
ble and well-named interfaces. This is very important in big projects
with long time support.

Knowing the basics, it is possible to focus on how the function call is
conducted in message based languages. All classes derive from base
type (NSObject). Base type provides meta-data about user-defi ned
classes including method name lists. The name of the method must
be unique. After compiling the code from Listing 3 we get following
classic C function call.

Listing 4

objc_msgSend(instance, drawCircleAtPoint, midPoint, size, context)

Function objc_msgSend checks if the given object has implement
drawCircleAtPoint. If yes, the function will be called by its given
parameters. If the function was not implemented nil value will be
returned (Python and Ruby throws an exception). Duck typing ap-
proach consumes more memory and runtime performance. Lan-
guage with a communication based on messages does not need
a strict inheritance hierarchy. It might look very tempting but it has
some fl aws.

4.1.1. Duck Typing – dark corner
The biggest problem for dynamic languages is the unintentional
override function of parent classes and modifi cation of base class
behavior. The programmer can override the parent classes by writ-
ing their own function with the same name and parameter list in his
own class as method in base class. There is no easy way to avoid this.
For Python or Ruby, the programmer has to manually check if the
function has a unique name in the inheritance hierarchy. It is even
harder for Objective-C where private methods are not refl ected in
class interface.

4.2. V-Table
The second option is to use a table of pointers to functions called
virtual tables or v-tables. This solution was chosen for C++, C# and
Java as it is faster but requires a strict inheritance hierarchy.

C++ has diff erent mechanisms for virtual and non-virtual functions.
For non-virtual functions compiler checks type of object/pointer/
reference and uses the correct one. For the class which has at least
one virtual function, instances contain special member called v-ta-
ble (virtual table). This member is invisible for the programmer while
writing the code but it is possible to check the presence and the

Nokia Shaping the future of telecommunication. Check how the experts do it. 147Nokia Shaping the future of telecommunication. Check how the experts do it.146

Listing 7

class Shape {
public:
 virtual void draw() = 0;
 virtual ~Shape() {};
};

As a registration example we use class Rect which is based on the
Shape interface. Please focus on the createRect() method. The Rect
class registration should be placed in *.cpp fi le of this class.

Listing 8

class Rect : public Shape {
public:
 virtual ~Rect(){};
 virtual void draw()
 {//implementation is not important
 }

 //static method used as creation method in registration
 process
 static Shape* createRect(){ return new Rect(); }
};

//Rect.cpp
namespace {
 const bool addRect = Factory<Shape>::getInstance()
 .addObjectToCreationList("Rect",
 Rect::createRect);
}

All const variables have to be initialized at the beginning of the ap-
plication lifetime (in this case even before reach main function). Rect
class will be available in Factory from the beginning of runtime.

All classes which use Rect do not have to know anything about it
beside that Rect derive from Shape interface. Shape client code can
be completely independent from concrete implementation. Using
string as the key in factory for a specifi c object makes it possible to
deploy new shape-derived classes without recompiling components
that use Factory as source of shapes. It wouldn’t be possible when
using constructions like enums.

Design patterns implementation can diff er from language to lan-
guage. A good example of this Factory. The pattern’s base concept is
to create various objects without exposing creation details. A ben-
efi t of using this pattern is that all users will be forced to rely on
a common interface instead of a concrete class implementation.
There are many ways to implement this pattern in C++ one of the
best was presented in [1].

Listing 6

template <typename T>
class Factory {
public:
 static Factory<T>& getInstance() {
 static Factory<T> instance = new Factory<T>();
 return *instance;
 }

 T* createObject(std::string className) {
 return creationList[className]();
 }

 bool addObjectToCreationList(std::string className,
 std::function<T*(void)> creationFunction) {
 if (isObjectOnCreationList(className)) {
 creationList[className] = creationFunction;
 return true;
 }
 return false;
 }

private:
 bool isObjectOnCreationList(const std::string& className) {
 return (creationList.count(className) > 0);
 }

 std::map<std::string, std::function<T*(void)>> creationList;
};

This is a smart template factory implemented as a singleton. Con-
struction in method getInstance is thread safe for compilers which
support the C++11 memory model. The most interesting thing is
the registration method. Standard Shape class hierarchy will be
used to present how it is done. Shape interface is presented on
Listing 7.

Listing 10

//objective-c
bool isMethodImplemented = [instance respondsToSelector:@selec-
tor(methodName:)];

#Python
if getattr(instance, 'methodName', None) is not None:
 isMethodImplemented = true

#Ruby
isMethodImplemented = instance.methods.include? 'methodName'

6. Summary
Polymorphism is the most essential part of Object Oriented Languag-
es. Diff erent languages have diff erent approach to implement this
functionality. It means that some concepts which are valid for static
typed languages, do not apply to dynamic deduction types. The imple-
mentation of polymorphism impacts specifi c implementation of de-
sign patterns and changes many code writing rules. It is easy to verify
this sentence by comparing the source code of two projects: one writ-
ten in C++/C#/Java second one implemented in Python or Ruby.

References
[1] Andrei Alexandrescu. Modern C++ Design: Generic Programming

and Design Patterns Applied. Addison-Wesley Professional, 2001.
[2] Robert C. Martin. Agile Software Development, Principles, Pat-

terns, and Practices. Pearson, 2002.
[3] Marc Gregoire, Nicholas A. Solter, Scott J. Kleper. Agile Software

Development, Principles, Patterns, and Practices. Wrox, 2011.
[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

About the author

I work as programmer in Nokia in Poland. Throughout
my career I have used various technologies and
languages : C#, Objective-C, C, C++, Python, CUDA.
Currently, I work in MBB FDD LTE Where programmer
not only write code but also create software.

Dawid Bedła
C++ Software Developer
MBB FDD LTE

Factory design pattern is a good example of degeneration based on
language polymorphism implementation. This is clear after compar-
ing C++ implementation from Listing 8 with implementation in more
dynamic languages.

Listing 9

#python
newInstance = getattr(modul, class_name)()

#ruby
instance = Object.const_get('ClassName')

#ruby with rails
newInstance = "ClassName".constantize.new

//objective-c
id newInstance = [[NSClassFromString(@"ClassName") alloc] init];

//C#
var newInstance = System.Reflection.Assembly
 .GetExecutingAssembly()
 .CreateInstance("ClassName");

Looking at the example in Listing 9, it is easy to conclude that in
Python, Ruby, Objective-C and C# a factory pattern is available as
part of language. This is even more the case for dynamic languages
as there is no need to use interfaces directly. Duck Typing is the way
to avoid information about type of object.

Observer Pattern[4] is the concept where one class Subject which
maintains data allow other objects Observers to register for chang-
es. It is done via defi ned interface. Class Subject provides a method
for registration and deregistration; Observers provide method for
notifi cation.

For static typed languages like C++ it is easy to verify if Observers
implement the proper method. Registered objects just have to in-
herit from interface (abstract class) and then implement it(other-
wise there will be compilation error). Duck Typing allows inheritance
to be avoided and the base object to be used for registration in-
stead. This may lead to the utilization of the wrong implementation
method during class registration. To avoid runtime errors, verify if
the specifi c method is implemented for the given object instance. It
is done by the function provided by the standard language imple-
mentation.

Nokia Shaping the future of telecommunication. Check how the experts do it. 149Nokia Shaping the future of telecommunication. Check how the experts do it.148148

Best Engineering Practices

 Andrzej Lipiński
R&D Manager
MBB System Module

A Brief Introduction to the Software
Confi guration Management

Software development in large scale projects is a very complex pro-
cess. Large scale – meaning hundreds or thousands SW engineers
working in parallel to achieve the project goal. The rule is simple –
the more complex the project becomes, the more people are in-
volved. “More people” means more interactions, dependencies and
communication. uch large scale introduces complexity which needs
to be addressed appropriately. Two or three software developers
working on relatively simple web page will eff ectively coordinate
their work and solve the approaching problems on the fl y. A diff er-
ent picture will be seen in project working on operation system or
in projects we realize in NOKIA like e.g. software running on the ra-
dio base stations (Flexi) or the software running the radio network
management system (NetAct). The people working in teams made
of dozen and more people may spot quite challenging situations.
It is sometimes not easy to get a clear vision of the impact of own
changes in the source code on the other team members work. Then,
even more challenging becomes to realize and understand the im-
pact we made on projects we do cooperate with.

Figure 1 More people means more interactions, dependencies
and communication. Cooperation within small team looks
trivial comparing to what we face in complex project.

If we want to secure the realization of the software project goals
and make it successful, it becomes necessary to introduce rules
which would make putting together the software as automated and
eff ortless process as it can be.

It becomes necessary to set clear rules helping various teams work-
ing together and cooperate smoothly, e.g. agreeing on “human in-
terfaces” translating one team’s needs into other team’s activities,
agreeing on the roles and associated responsibilities. Agile meth-
odologies come here in handy supporting projects with list of best
cooperation practices and making daily work more effi cient. Addi-
tionally the cooperation in big projects spans not only across diff er-
ent teams but diff erent countries, time zones and cultures as well.
Those are the factors the cooperation rules need to take into con-
sideration and utilize them to the project advantage.

It is also necessary to equip the teams with tools which will quickly put
together their separate contribution into one working application.

It is exactly the Software Confi guration Management (SCM) duty to
equip software development projects with appropriate processes

and tools which would allow eff ective creation of subsequent soft-
ware releases. The other words – the main task of SCM is protecting
projects from becoming lost within several versions of software de-
veloped at the same time and throughout whole life of the project.

1. Some analogies
The applications, similarly as e.g. cars, are built of the various compo-
nents cooperating with each other. Such components are created by
teams highly specialized in their own domain or in cross-functional
teams with team members of distinct expertise areas. The outcome
of work of such teams (creating e.g. reversing sensor, transmission
layout, etc) makes an input for another team putting all the parts
and pieces together into one functional car. On the typical movies
from car factories we can usually see whole rows of robots arms
working 24/7 on the production line. They are continuously putting
together new models of cars from the available components.

Such production line has its counterpart in the software production
world and it is called “software integration”. Dedicated systems are
busy with completing sets of the right components of the applica-
tion (right – means here in appropriate version, containing appro-
priate functionalities and verifi ed by appropriate quality tests) and
putting them together into one functional application.

Figure 2 Putting all the parts and pieces together into one func-
tional equipment. No matter what industry – the chal-
lenge remains similar.

In both cases – car assembly and software production we need
rules and appropriate tools which in the most automated manner
will gather outcome of various teams working in parallel on diff er-
ent components and put them together in correct way. Those rules
describing the way we’re cooperating on the daily basis are called
“processes”.

Nokia Shaping the future of telecommunication. Check how the experts do it. 151Nokia Shaping the future of telecommunication. Check how the experts do it.150

to keep safe and organized the subsequent “versions” (or alternatively
“revisions”) of our code developed across many “branches”.

Successful “build” (without compilation errors, without linking is-
sues,..), successfully verifi ed by various “test collections” (showing
no functional problems) can be marked as one of the “versions” of
our application and can be “delivered” to our customers.

All information related to above elements and the relations between
them allowing us to uniquely identify particular version of our appli-
cation are called “confi gurations”.

Confi gurations tell us what components were included into specifi c
confi guration and in which version, what tools were used to build the
components (and in which version) and what tests (and in which ver-
sions) were used to verify them. Completing such information helps
us to recreate at any point in time the exact working environment
and analyze the raised problems.

Figure 3 All information allowing us to uniquely identify particular
version of our application is called confi guration.

The inconvenient truth is the software projects are not able to
discover on the daily basis all the errors existing in their source
code. It is project specifi c how high it sets the bar and how close its
products will come to the 100% error free zone. In order to assure
that appropriate quality applications are thoroughly tested for ex-
tended period of time before they reach the market. The quality
of tests and amount of the test scenarios is an object of constant
improvement. In order to make bug solving fast, it is necessary to
be as much meticulous when gathering the confi gurations. Thanks
to fully automated work environments, we are able to re-create any
particular environment (get the right version of the source code
from the Version Control System, get the appropriate version of
the compiler, system libraries, tests) and instantly start the work
on bug fi xing.

Very similar, when the project will decide to start work on alter-
native version of the application – once the decision about which
version of the current application will make the foundation for the
new project, the work can start after few commands setting up

3. Cooperation
As mentioned, two scenarios are possible here. We can work in
“component teams” focusing on next versions of the components
of the application. The teams consist in such scenario from highly
specialized members and with the deep knowledge about specifi c
component of the application. Scope of their work is to implement
new functionalities within the frame of the component. In our car in-
dustry example it would be e.g. teams working on the air-condition
system or rear mirror design. After their work is being completed
new car models are being assembled with latest features coming
from those teams.

We can also choose to create “feature teams” – focusing more on
whole application functionality rather than single component. The
approach follows here the defi nition of certain application function-
ality which implementation requires tight alignment of the features
in several components. Cross-functional teams are consisting from
experts bringing knowledge about diff erent components and work-
ing together to develop the functionality coupling features from
several components. That would make sense for the car makers e.g.
when rain detector experts would join their forces with the wipers
system engineers or in order to deliver auto-pilot feature experts
from transmission layout, engine, navigation and ambient condi-
tions tracking system would create one team.

In the various software projects we would see both of such team
set-ups. The small project would start typically their adventure with
cross-functional team – consisting from developers, testers and de-
vops. The “devops” role may be described as part time developer –
part time IT/SCM expert; both actively working in development fi eld
and – because of the expertise – being able to set-up the working
environment for whole project.

Next, when the project grows, it usually makes sense to develop
highly specialized teams focusing on their expertise areas. This is
the moment when dedicated SCM teams are being created. Their
aim is to serve whole project with unifi ed and most effi cient tools
and processes forming best possible software production line.

However depending on the project needs we can also spot those
cross-functional “feature teams” in the big scale projects as well.
The SCM teams support such cross-functional development teams
in the same way – delivering the means of putting whole project to-
gether into one functional application.

4. Confi gurations
In order to make easier moving around the software projects it is
good to agree on certain way how to name all the elements of the
work environment as well as the relations between them.

Usage of the “Version Control Systems” (VCS) becomes common prac-
tice among software development projects. The main aim of VCSs is

1.34

1.00 1.50
release 3.5

12.11

2.01 0.65

It is necessary to make as clear as possible for everybody, what are
the interactions between project components and what are the
dependencies between them. At any given time during daily work
we must exactly know what part of the application we are currently
working on. Only then we can easily focus on improvements we’re
currently struggling with, knowing our changes will be introduced in
correct version of the application.

Controlling both the changes of the source code (bug fi xes, new
features) and application confi guration (versions of the compilers,
system libraries, ..) in all releases of our project assures we will be
able to recreate any variation of our application. It means we must
track not only changes introduced to the source code – we must
know what version introduced any particular functionality or fi xed
some bug, but also track all the information about all the tools we
did use during writing the code. This makes possible e.g. to identify
the problems generated by usage of diff erent system libraries by
the team members or spot the problems generated by newer ver-
sion of compilers introduced to the project.

7. Tools
The basic tools used in software development projects are men-
tioned already: Version Control Systems (GIT, Subversion, Perforce,
Bazaar, Mercurial, ClearCase – to name a few), compilers, build sys-
tems and continuous integration systems. Additionally common
practice is to use in house tools created by the project members
themselves – usually using scripting languages like bash, Python,
Perl.

Version Control Systems (VCS) are meant to track subsequent ver-
sions of the source code. Each time when the programmer becomes
happy with the current state of his work he saves it to the disk mak-
ing it persist. Well, this is not enough – we cannot let the previous
version to be overwritten and lost forever. This is the place where
version control becomes handy. After saving the content of the fi le
we do inform VCS to record this newest version. One command – and
we’re done. The new version of our fi le joins the previous versions
in the VCS database and remains safe as long as the database ex-
ist. The usage of such tools becomes natural with the fi rst day and
becomes quickly a habit. At once we do receive safe way of keeping
the history of development of our project and easy way to fi nd any
changes we introduced in the past.

The compilers and build tools (make, ant, maven) are usually built
into the “build systems” shaped according to specifi c project needs.
The main task of build systems is to prepare working environment
for the software developer, get the right source code version, as-
sure all related application components availability and build a func-
tional/running version of the application we’re developing. The build
system automatically does all the steps necessary and you can
choose if it should build the whole application or only the specifi c
part of it.

the new working environment. It is possible because the confi g-
urations work like recipes – helping us quickly set an appropriate
working environment.

5. Coordination
The second mentioned aspect of SCM – cooperation rules – grants
us the knowledge necessary to identify who is who in our project
and what are the responsibilities in our project family, with whom
we ought to talk, whom to listen to, who is obliged to pay attention.
As in every family such knowledge of the rules can save us some
bloodshed.

Those rules (or “processes”) are well known by us and instinctively
followed on the daily basis and become practically invisible. They
become clearly visible once they are not followed.

Let me get back to the example of the car assembly line. The team
responsible for transmission layout has made a major improve-
ment (reliability increase) and replaced all the cabling from copper
to fi ber optic. They actually also did not bother to communicate
this change to anybody outside the team. The team starts to de-
liver new versions of the transmission layout only to discover ma-
jor issues raised by reversing sensor team and some other as well.
Everybody is still expecting that information about transmission
layer dealing will arrive on their copper-based interfaces. The im-
provement becomes a bug.

The missing part here was the lack of adherence to the coopera-
tion rules described by project processes – which main and over-
riding task is to secure completion of working car. In above exam-
ple we may see typical reasons for projects to get into trouble
– both lack of sticking to the project coordination rules (teams
cannot introduce autonomic not agreed changes to the project
in their components) and lack of appropriate communication (the
improvement attempt should be widely communicated to the
rest of the project in advance). The equivalent of such situation
in software development project would be introduction of new
functionality to the source code without any consideration of im-
pact on the rest of the project beforehand. The components stop
matching each other, application stops working, project enters
failure mode.

The cooperation rules aim to describe the safest way for the project
to introduce changes.

6. Control
Each complex software development project is based on numerous
teams cooperation. Team members must coordinate the new ide-
as created every day and following implementation so the project
could thrive without obstacles generated by mutual interaction of
changes introduced. The cooperation between team members must
result in timely delivery of new software versions.

Nokia Shaping the future of telecommunication. Check how the experts do it. 153Nokia Shaping the future of telecommunication. Check how the experts do it.152

best programmers – when developing this next groundbreaking ap-
proach or smashing this vicious bug – would focus only on what mat-
ters instead of worrying about the impact of the rest of the project
on their work. They do not need to worry where the specifi c version
of the source code they were working on last week is to be found.
They use the project working environment and simply go with the
fun work – implementing new features. Unlike the colleague next to
them wasting time on investigating issues caused by the latest – just
downloaded from internet – compiler.

The processes and tools delivered by Software Confi guration Man-
agement are meant to remove such problems. They aim to make
everybody’s life simpler and help work become fun again.

The presence of the rules creates quite interesting side-eff ect to
our job. By default the rules create restrictions for the daily work –
not everything is allowed. Sometimes in the heat of the fi ght with
the especially pesky bug, bending the rules seems like the only op-
tion to the developers. To our surprise sometimes such approach
delivers impressive outcome. Such rule-makers vs rule-benders
race is another of means of keeping the progress evolve and makes
our work interesting. This constant need for better ways to create
the software without compromising the safety of the whole project
remain our main challenge.

Figure 4 The build systems prepare working environment, get
the right version of the source code, assure all related
application components are available and build a run-
ning version of the application.

The continuous integration systems (a good example would be Jen-
kins) use build systems, VCSs and make use of defi ned sets of tests
collections in order to deliver in the real time information about
project progress. It is especially useful when a lot of changes in
the source code are being introduced by diff erent programmers at
the same time. Continuous Integration makes possible for all team
members to track the impact of own changes on the whole project.
Especially it allows to quickly realizing if the changes do not break
the application.

Figure 5 The continuous integration systems use build systems,
VCSs and sets of tests to deliver the project progress
information in the real time.

8. Summary
You can think about all the rules – naming of the elements of our
project, rules to control their changes (confi gurations) – as names
of the streets, cities or districts. They are meant to help us better
realize what particular place in the project are we dealing with at the
moment.

Setting the rules describing cooperation on software development
projects helps us to create safe work environment. So even the

Compiler Build systemVersion
Controll System

Build latest version
of my application and
test it afterwards

Take the 3.12-3
version of my
application

Compile my source
code with system
libraries

Compiler

Changes in the code integrated on the fly
with the rest of the project

Integration Tests
Version
Control System

Continuous Integration

Continuous
Integration Server
e.g. Jenkins

Save my changes
to the code

Save my changes
to the code

Save my changes
to the code

About the author

I’m working in the MBB System Module SCM
department. We take care about everything what
is needed in order to make work on WCDMA, LTE or
5G the most effi cient. Our portfolio includes build
systems, software integration, automating the
development work environment – be it with GIT, SVN,
Jenkins, Python or bash – we make it work. We make
the environments for really large scale projects – where
thousands of programmers work each day on the
newest generations of the latest telecommunication
solutions. We work in teams. We like to look for holes in
the whole and make the good solutions better ones.

Andrzej Lipiński
R&D Manager
MBB System Module

Nokia Shaping the future of telecommunication. Check how the experts do it. 155Nokia Shaping the future of telecommunication. Check how the experts do it.154154

Best Engineering Practices

 Marcin Gudajczyk
Senior Engineer, Software Confi guration
MBB System Module

Advanced Branches Utilization
in Subversion and Git

1. Introduction to branches in Version Control Systems
Version Control Systems (VCS) have proven to be very powerful
tools. Since their appearance in the 1970s, they have evolved signif-
icantly over time and have constantly off ered more advanced code
management possibilities. When given to the developers and inte-
grators, they can be compared to the fi nest armor, shield, and most
of all a weapon which can be used to shape and slice the code itself.
Besides basic code storage possibility, VCS provides a wide range
of functionalities that make life for people working with code much
easier. One such useful feature is branching. To explain branching,
picture yourself looking at a tree starting from the trunk at the
bottom and moving up to the top step by step. You will notice its
branches and even branches of branches. Logically, the VCS struc-
ture looks quite similar, starting from the fi rst commit (root) and
tracking the history of changes. There are “nodes” where branch-
es are appearing and starting a new development line. They can be
used for managing dedicated features made on the top of specifi c
code revisions, or testing various changes. Modifi cations made on
such paths are always available and never lost (unless intentionally
deleted). However, unlike in the real tree example, branches can be
consolidated to take their specifi c changes back to the trunk (and
not only).

Imagine a really big project. A BIG project in NOKIA reality means
that there can be up to 300 developers working continuously on
one repository (where code from dozens of repositories is used
to build one product). What a mess there would be if they all
worked on one “main development line” (the trunk). A single de-
veloper trying to implement a feature could face notorious code
changes from other people while updating the code with modifi -
cations made by others. Those could introduce confl icts or even
bugs. To avoid such situations a programmer can simply branch-
off from the trunk and work on its own “copy”. While working on
such a branch, progress will not be interrupted and the process of
putting completed implementation back to the trunk can be han-
dled later. Continuous Integration (CI) is intensively using branch-
es for wide purposes of constant building, testing, and delivering
reports of changes made for the project. This article will describe
shortly advanced branches utilization procedures with CI usage
examples.

2. Representation of commits in Subversion and Git
To further present how both VCSs are managing branches, the
method of keeping information for each commit (single chunk of
changes put into repository with its unique ID) has to fi rst be ex-
plained. Both Subversion and Git systems provide data to the user in
the form of a directories/fi les tree in which code can be kept. How-
ever, implementation of the method of how each of them stores
data diff ers drastically. This actually determines a few things such
as how fast the repository operations are performed, how much the
workspace weights, how the user can refer to data, and most impor-
tantly what functionalities can be given by VCS.

Subversion documentation claims, that SVN can be described as
a simple fi le system with revision control [1, 2]. Each revision stores
only the diff erences (diff) to the previous revision, for example re-
vision no.123 contains the information regarding what exactly has
changed comparing to revision no.122. (there are also additional
properties available to be defi ned for revisions, but this is not impor-
tant in this article at the moment; please check [3] for more informa-
tion). This actually leads to the fact, that the Subversion repository is
a “database” of diff erences used to prepare the workspace. Appropri-
ate diff erence reports can be generated for two custom revisions [4].

On the other hand, there is Git which off ers an alternative approach.
Revisions are not held as diff erences to the previous versions of re-
pository. Instead each revision is a snapshot of a data. Whenever Git
notices, that a fi le has changed, it stores it to snapshot (entirely). If
the fi le was not changed, only a pointer to the previous revision for
that fi le will roll to the snapshot [5]. This creates a repository where
data is held in a manner of a Directed Acyclic Graph (DAG), where
snapshots are nodes and pointers are directed lines connecting
nodes [6]. Novice Git users often have problems in understanding the
dissimilarity between a directory tree and a history graph tree. There
is also a possibility of generating diff erences between given revisions.

3. Branching in Subversion

3.1. Basics
As already mentioned, SVN behaves just like a fi le system, therefore
the creation of new branches is handled by a copy operation of a di-
rectory (branch cannot be created from a fi le, neither in Git). This is
done by a command supported with commentary in quotes:

svn copy svn://repo/source_dir svn://repo/branch_dir \
–m "branch created from source directory"

Since SVN is a centralized VCS, each branch is always visible for all
repository users. As regular directories, these can also be moved,
renamed or even deleted:

svn move svn://repo/branch svn://repo/new/location/branch \
–m "branch location has changed"
svn delete svn://repo/new/location/branch \
–m "branch removed from the repository"

But what happens with the branch after it is deleted? Was not the
repository meant to store the revisions history? Actually it does. If
for example a “branch” was deleted in commit 145, it is still visible in
all the previous versions where it existed. However, to recover such
information a special reference by peg revision has to be used [7]
unlike regular revision query “-r”, which allows to examine the re-
pository at the state which it was in the past:

svn info svn://repo/new/location/branch@144

Nokia Shaping the future of telecommunication. Check how the experts do it. 157Nokia Shaping the future of telecommunication. Check how the experts do it.156

Figure 1 Adaptation branch recreated under the same location. Vertical lines represent commit numbers and crosses are commits responsible
for branches deletion. Commits no. 105, 140, and 160 represent “svn copy svn://repo/trunk svn://repo/adaptation/branchX”.
Commits no. 131, 158, and 189 are a visualization of “svn delete svn://repo/adaptation/branchX”.

NOTE: All arrows on fi gures related to Subversion represent a timeline and fl ow of actions made to the repository. Commits (many are
omitted to simplify images) will be shown as vertical lines.

CI tip: This solution is extremely useful for handling short living branches dedicated for adaptation. Imagine a mainline with constant en-
vironment changes, which breaks all building and testing. A developer’s work is ruined every day by such updates. To bypass this problem,
integration should be performed on dynamically created branches. After it is fi nished, a stable code should be put to trunk. This guarantees
a stable and working code base for all programmers.

Figure 2 Representation of a merge operation in SVN. Commit no.103 is point of branch creation. Commit no.206 is the merge of changes
from branchY to trunk.

timeline

trunk

adaptation/branchXadaptation/branchXadaptation/branchX

175

189180171160158131129105 150140

153145120104101100

timeline

trunk

svn commit –m"merging feature from branchY to trunk"

204103

102

206

100

svn merge branchY

svn copy trunk branchY –m"branchY creation"

wise to update the branch and resolve any misalignments step by
step in order to avoid big discrepancies between the two. For this
purpose, regular merge operations are performed through the life-
cycle of the branch, however it will pick the changes from trunk to
branch (opposite as in the previous example). Such an action can be
performed multiple times until the feature will be completed. The
fi nal merge will be performed in a regular manner from branch to
trunk but with one additional fl ag “--reintegrate” (Figure 3). This
will literally tell Subversion that the branch was synchronized with
its parent and special tracking of changes has to be used [12]. The
following are some example actions:

svn copy svn://repo/trunk svn://repo/branchF –m "branchF is ON"
svn checkout svn://repo/branchF
cd branchF
Do some changes and commit to the branchF
Changes were also done on trunk by other users
so synchronization should take place
svn merge svn://repo/trunk .
Solve all possible conflicts and commit the merge
Do some changes and commit to the branchF
perform synchronization again and commit it
svn merge svn://repo/trunk .
It is time to put the changes on trunk
svn checkout svn://repo/trunk
cd trunk
svn merge svn://repo/branchF --reintegrate .
svn commit –m "final merge of branchF to trunk"

4. Branching in Git

4.1. Basics
From a technical point of view creating a branch in this VCS is a to-
tally diff erent operation. Beside the fact that the commands used
are unlike in SVN [13], something else is also done underneath. While
a branch is raised, an additional pointer appears to indicate a spe-
cifi c commit on top of which subsequent revisions will be put. The
pointer will always move to the newest commit of this branch [14].
In this implementation, the branch gets its full meaning. In a decent
repository, graph structure representation will defi nitely depict the
presence of real branches. To create such branches, assuming that
the repository is already cloned [15, 16], execute:

git branch myBranch
git checkout myBranch
Above commands can be substituted by one below
git checkout -b myBranch

The current data snapshot presented in the workspace is used by
default as the base for a new branch. Therefore, the aforemen-
tioned commands have only “myBranch” given as the target that
will be created.

On the latest revision of repository, the deleted directory does not
exist, so a new one can be created in its place. Such an approach
allows having distinct branches with identical names in the same
location. Each will still be available after deletion, if referred to by
the proper peg revision. All basic branching operations are visible
in Figure 1 .

3.2. Merging
Let’s assume that a feature was developed on a branch (“branchY”
on Figure 2). Nearly 50 commits were made to fi nish it and now
it has to be put to trunk. There is no need to perform all the same
commits once again onto trunk. The fastest way of delivering
changes is to perform a merge operation, which takes chang-
es from the source branch and creates only one commit to the
target branch, containing all required changes. An important ad-
ditional attribute is created during this operation – a property
called svn:mergeinfo which contains information about the merge
source. It is used by SVN to track the change history [8]. It is re-
quired to perform such an operation on the local workspace after
checking out the repository. Whenever any confl ict is met it has to
be resolved [9]. The merge operation is performed as follows on
the target directory (trunk):

svn checkout svn://repo/trunk
cd trunk
svn merge svn://repo/branchY .
Possible conflicts will be visible while performing above
operation
svn commit –m "merging feature from branchY to trunk"

3.3. Cherry picking
There are cases, where specifi c changes (not all) made on one branch
should be copied to another. For this purpose a special merge tech-
nique was created called “cherry picking”. It allows literally picking
a specifi c range of commits or just one commit and introducing the
required modifi cation to the destination branch. For the example
below, the trunk directory is already a current workspace and a par-
ticular commit change from branchY is being picked:

svn merge -c 110 svn://repo/branchY .

If the merge was extensively used on the repository in the past,
it is highly probable that additional data totally unrelated to the
commit will also be caught in the operation. Instead of picking
changes for requested commit, after executing above command,
unrelated modifi cations will also be introduced. To avoid such a sit-
uation, fl ag “--ignore-ancestry” has to be manifested for merge
operations [11].

3.4. Reintegrated merging
Feature branches are often long lasting creations and have to be
maintained for a period of time. Trunk is constantly growing so it is

Nokia Shaping the future of telecommunication. Check how the experts do it. 159Nokia Shaping the future of telecommunication. Check how the experts do it.158

Figure 3 Visual representation of the maintenance process of a long lasting branch with reintegrated merge.

CI tip: In Subversion 1.8+ the “--reintegrate” fl ag does not have to be explicitly defi ned and SVN can recognize by itself when to use it;
however, for sanity reasons and code clarity there is still profi t in keeping this fl ag visible in all scripts.

Figure 4 Simplifi ed Git repository graph with master (SVN’s trunk equivalent) and dynamically recreated branch with identical “tempBranch”
name. Strikethrough pointers represent operation of a branch “deletion”. Commits with 2 pointers are nodes from which a branch
was created.

NOTE: All arrows on fi gures related to Git will represent pointers but not the timeline! Commits/snapshots are shown as circles with abbre-
viated hashes.

CI tip: Short living branches can be handled this way. CI confi guration will not have to be changed because a branch will always be visible
under one name.

timeline

trunk

svn commit –m"final merge of branchF to trunk"

svn merge branchF . --reintegrate

svn copy trunk branchF –m"create branchF"

svn commit –m"synchronization with trunk"

svn merge trunk .

timeline

tempBranch

master

tempBranchtempBranch

d867 4bca 3456 1236 ad34 faf2 acb4 db59 afc7

af23 3d21 a089 aacd ffa3 bba4 890a cb23 275a b389 ffa9 935a

performed in both ways (Figure 6), from master to branch and
from branch to master, without defi ning any additional fl ags similar
to “--reintegrate”. Simplifi cation of operations brings more clarity
to all actions made on the repository. There is no need to remember
about any obligatory fl ags.

4.4. Cherry picking
This operation is also available for Git and again, because there are
no possible issues related to additional metadata, it always picks
specifi c changes from snapshot without any hidden inheritances. It
can either transport a single change or a range of changes (one by
one) to the required branch. While this operation is performed, to-
tally independent commit(s) are created that have no relation to the
snapshot from which it was picked. Here are examples of perform-
ing such operations while already working on the destination branch
(workspace is the default target):

git cherry-pick a12f
git cherry-pick df9a .̂.cb5e

4.5. Rebasing
The last operation worth mentioning in this article is called rebas-
ing [21]. It allows the branch “base” – a commit to which the fi rst
branch snapshot points – to be changed. All branch specifi c com-
mits are taken one by one and applied step by step on a defi ned
snapshot. In comparison to merge, which creates an additional
consolidating commit, rebase involves moving existing branch
commits (Figure 7). Despite that the branch name will not change,
commits hashes will! Of course confl icts can be visible here also.
Unfortunately, this operation is not desired for published chang-
es of shared branches. It can break other users repository clones
while changes are pulled in the default way. It is highly discouraged
to alter the history of already pushed commits. Such modifi cations
can also be easily overwritten by unaware users. Rebase is per-
formed by executing:

git checkout -b myBranch
Do some changes and commit them
git checkout master
git pull # Some changes made by other users appeared on master
git checkout myBranch
git rebase master

5. Conclusions
From the perspective of this article a statement can be made, that
both VCSs provide functionally similar solutions; however, they are
implemented with totally diff erent approaches. There are very few
tasks that could not be completed in one of the discussed systems.
To have a better understanding, history visualization and its varia-
tions can be studied [22, 23]. There are also useful tools that pro-
vide graphical interfaces for history browsing like TortoiseSVN, Tor-
toiseGit and gitk.

Keep in mind that unlike SVN, Git is a distributed VCS. Local copy
of origin is self prosper and fully functional repository. One of the
consequences/profi ts of this is that newly created in example “my-
Branch” is local. It will not be visible to any remote repository (ori-
gin) user until pushed [15, 16]. To do this, the following command is
required:

git push -u origin myBranch

In conclusion, the branch name in Git is just a pointer to a specif-
ic commit. Once this fact is acknowledged, understanding Git me-
chanics comes with much ease. So what is exactly happening when
a branch is “deleted” (Figure 4)? Of course only a pointer will be
removed! All commits made for that branch will still be available in
the repository while referred by its hashes [17] (revisions identifi ers
represented by SHA-1 checksums, which are often abbreviated, for
example “a1d3”). This again leads to the situation where a branch
with the same name can be created multiple times in the repository.
This should not be done unless a reasonable CI purpose exists.

4.2. Merging
Basic merging also diff ers slightly from what was already present-
ed for Subversion. The operation creates an additional commit,
which instead of keeping diff with additional metadata, holds two
pointers to the commits that are being merged. Files that con-
fl ict during the operation, after resolving it, will be put into the
snapshot. This also moves one of the pointers depending on which
branch the merge is being performed [18] (please check “master”
pointer move on Figure 5). Simple commands are responsible for
this operation:

Current branch is master
git checkout -b myBranch
Do some changes here and commit them
git commit –m "changes made on myBranch"
git checkout master
Update repository content with pull command – other users
made changes on master
git pull
git merge myBranch

The merge operation creates responding snapshot by itself, so no
additional “commit” is required here anymore. If no confl icts [18]
are met or there are no changes on master, fast-forward [19,20] is
performed for relocating/creating pointers. Merged branch can be
deleted later on as the changes are now also visible on the mainline.
This is however not recommended – “deleting” a branch would only
make history less transparent.

4.3. Merging transparency
Because of pointers usage no additional information similar to
svn:mergeinfo is required. This allows the merge operation to be

Nokia Shaping the future of telecommunication. Check how the experts do it. 161Nokia Shaping the future of telecommunication. Check how the experts do it.160

of plans. Since SVN is centralized, its users are also heavily “master
host” dependent. Git as a distributed VCS does not face such issues.
It is also faster and its merge implementation leaves little room for
confl icts. Picking one VCS over another is only dependent on what
advancement level is required for the project where it will be used.

Subversion is much easier to master because it has logic similar to
regular fi le system. Its popularity lies in its simplicity as a tool, howev-
er more sophisticated setups are often hard and time consuming to
implement. On the other hand, Git requires more time to master, but
also provides a lot of built-in functions that facilitates the realization

Figure 5 Example of a simple merge operation in Git, where master’s pointer is relocated. Strikethrough pointer was active before the
merge operation.

Figure 6 Representation of a multidirectional merge for a branch and its parent. There are many merges from master to “myBranch” and
from “myBranch” to master.

CI tip: Git merge implementation greatly simplifi es maintenance of long-living branches, because of its universal usage. In comparison to
SVN this also reduces amount of code used for scripts handling actions done on branch.

timeline

myBranch

master

8943 cb29 0bda fd7838ab 0077 092d

af46 bc81 0682 bbcc ff67 cdf3 0924 bcf1 ab41

timeline

master

master

c547 ac78 0980 1264 cf40 762b

myBranch

456f af45 f8a9

 [20] https://sandofsky.com/images/fast_forward.pdf
 [21] https://git-scm.com/book/en/v2/Git-Branching-Rebasing
 [22] http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html
 [23] http://git-scm.com/docs/git-log

Other references worth to mention
 [24] http://nvie.com/posts/a-successful-git-branching-model/
 [25] http://rogerdudler.github.io/git-guide/
 [26] http://think-like-a-git.net/

About the author

I work in MBB System Module (Software Confi guration
Management) Department. Every day I maintain
and develop Linux based Continuous Integration
environments which are responsible for building
and testing LTE (Advanced) and WCDMA products.
My position’s R&D aspect allows me to constantly
develop my competencies related to fully automated
Continuous Delivery systems.

Marcin Gudajczyk
Senior Engineer, Software Confi guration
MBB System Module

References
 [1] http://svnbook.red-bean.com/en/1.7/svn.basic.version-con-

trol-basics.html#svn.basic.repository
 [2] http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html
 [3] http://svnbook.red-bean.com/en/1.7/svn.ref.properties.html
 [4] http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.diff .html
 [5] https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
 [6] http://ericsink.com/vcbe/html/directed_acyclic_graphs.html
 [7] http://svnbook.red-bean.com/en/1.7/svn.advanced.pegrevs.html
 [8] http://svnbook.red-bean.com/en/1.7/svn.branchmerge.

basicmerging.html
 [9] http://svnbook.red-bean.com/en/1.7/svn.tour.cycle.html#svn.

tour.cycle.resolve
 [10] http://svnbook.red-bean.com/en/1.7/svn.branchmerge.

advanced.html#svn.branchmerge.cherrypicking
 [11] http://svnbook.red-bean.com/en/1.7/svn.branchmerge.

advanced.html#svn.branchmerge.nomergedata
 [12] http://svnbook.red-bean.com/en/1.7/svn.branchmerge.

basicmerging.html#svn.branchemerge.basicmerging.reintegrate
 [13] https://git.wiki.kernel.org/index.php/GitSvnCrashCourse
 [14] https://git-scm.com/book/en/v2/Git-Branching-Branches-in-

a-Nutshell
 [15] https://git-scm.com/book/en/v2/Git-Basics-Working-with-

Remotes
 [16] http://gitready.com/beginner/2009/01/21/pushing-and-

pulling.html
 [17] https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
 [18] https://git-scm.com/book/en/v2/Git-Branching-Basic-

Branching-and-Merging
 [19] http://ariya.ofi labs.com/2013/09/fast-forward-git-merge.html

Figure 7 Visualization of rebase operation. Snapshots changes are applied step by step to a new commit.

CI tip: A rebase operation is extremely useful for small “buff er” branches that always have to be rebased against their parent to keep pre-in-
tegrated changes and guard against confl icts met during their application. Rebase operations also help to keep the history clean.

timeline

masterdd39 1209 6ab1 0ff8 b689

myBranch

cfa0 c3b0 99cc

myBranch

0db2 23fa 76c2

Nokia Shaping the future of telecommunication. Check how the experts do it. 163Nokia Shaping the future of telecommunication. Check how the experts do it.162162

Best Engineering Practices

 Tomasz Prus
Manager, Customer Documentation
MBB R&D Mgmt and Automation

From Customer Documentation
to User Experience

1. Introduction
We live in a world of information. Every day we are bombed with tons
of data coming from everywhere. Sounds like a cliché? Yes, it does,
but that is the fact. In an era of telecommunication and mobile tech-
nologies, we see an exponential growth in data traffi c. Nokia is a sig-
nifi cant part of this global revolution. By delivering cutting edge mo-
bile infrastructure technology, we give shape to people’s daily life.
Thinking of Nokia products I mean hardware, software, and custom-
er documentation. This article is about good technical documenta-
tion, which plays a critical role in helping users to understand our
products or solutions. Although the belief is that ‘nobody reads
documents’ still exists, research studies suggest that users, regard-
less of their age or gender do read documentation to understand
products and technology [1]. Documents are very often the only
way to translate highly advanced knowledge into an understandable
format – operating documentation. This is what the Nokia Custom-
er Documentation department does. We are the bridge between
our customers and Research and Development (R&D). We build this
bridge together with over 300 technical writers, proofreaders, pro-
ject managers, and graphics designers located all around the world.
Every year we publish hundreds of operating documentation sets
covering Nokia’s portfolio.

2. The way of working
The functional goal of technical content is to help people use a prod-
uct successfully. Technical content may have persuasive objectives;
for example, describing the additional features available in a more ex-
pensive product edition may encourage people to upgrade to it. But
the informational angle is more important than the persuasive func-
tion. When managed properly, technical information can help you to:

• Meet regulatory requirements with minimum cost
• Extend your global reach by delivering content optimized for

each market
• Reduce technical support costs
• Reduce product returns
• Improve customer satisfaction
• Lower the overall cost of information development [2]

Nokia Customer Documentation Department creates operating
documentation for almost all Nokia products and solutions. We co-
operate with diff erent Business Units to fulfi ll their requirements
and satisfy our customer needs. Our content creation process con-
sists of four main steps: planning, creation, review, and testing, see
Figure 1 Customer Documentation process and main stakeholders.

Figure 1 Customer Documentation process and main stakeholders.

End-users

CuDo Technical
Support

Care
Team

CustomerOperating
Documentation

Feedback

Creation Review Testing

Enabling processRelease creation

}

Integration
and

Verification
HW/SW

Development
System

Engineering
Program

Management
Product

Management
Change

Management
Fault

Management

!< />

Delivery MaintenancePlanning

Nokia Shaping the future of telecommunication. Check how the experts do it. 165Nokia Shaping the future of telecommunication. Check how the experts do it.164

skills, whereas content creation needs strong product understand-
ing and technical skills.

The review step is conducted to assure high quality standards. This
stage requires cooperation between reviewers and technical writ-
ers. Technical reviews can be organized in diff erent ways:

• Face to face meeting
• A virtual meeting (using teleconference and desktop sharing

features)
• Through collaboration portals such as JIRA, SharePoint,

Confl uence
• Through shared review tools, where reviewers can see and

comment each other’s remarks
• By email

After an agreed period of time, comments and suggestions are ap-
proved or rejected and the document is updated with new content.
It may happen that the review round occurs more than once. When
all stakeholders have completed their reviews and all updates are
made, the technical writer sends the document for testing.

Operating documentation procedures are tested by Integration
and Verifi cation (I&V), System Verifi cation (SyVe), or Technical Sup-

At each stage we work in close cooperation with various stakehold-
ers in order to produce several types of information:

• Descriptions (e.g. feature or product descriptions)
• Procedures (e.g. installation manuals, confi guration guides,

commissioning or troubleshooting instructions)
• Reference (e.g. parameter, counter, and alarm descri ptions)

Figure 1 presents a simplifi ed content creation process and visu-
alizes its main stakeholders. In the planning phase we project and
organize our delivery by analyzing customer and R&D requirements.
At this stage we make sure that all technical aspects will be covered
in the content. We establish communication channels with Subject
Matter Experts (SMEs) who will act as key content reviewers and in-
put providers.

The creation stage is the main stage of a technical writer’s work. We
use diff erent source materials such as specifi cations, technical anal-
ysis, marketing materials, technical reports, and reference informa-
tion taken from various databases. Depending on the information
type we develop pieces of information that are consulted and review
by SMEs. This phase is crucial as we work in a global company where
employees are spread all around the world. Gathering input for the
documentation requires excellent communication and presentation

Figure 2 Nokia Customer Documentation transformation strategy.

The right information is easier to find

Rich media

pilots

Internal

feedback

Customer

feedback

Competitor

analysis

Market

trends

analysis

Content streamlining Rich MediaTopic-Based-
Writing

<di a>tt

open standard for structuring, developing, maintaining, and pub-
lishing the content. This is the universal format for structured doc-
uments and data on the Web [4]. XML gives us also other benefi ts,
such as:

• Openness (XML is an open W3C standard that evolves and is
continuously under development)

• Separation of form from the content (XML stores meaning, not
presentation)

• Tagging system (In XML you can create your own sets of tags)

DITA introduces a complete content model, a framework that repre-
sents the structure of the information to be stored. In DITA, a con-
tent model is implemented through information types, or topic
types. DITA’s base content model (that is, the standard, default DITA
model) defi nes three information kinds: concept, task, and refer-
ence. Concept, task and reference topics contain diff erent types of
content. Concept topics contain explanations, task topics contain
procedural steps, and reference topics contain tabular look-up in-
formation [5].

Content is structured and stored in a neutral XML format, which can
be used to directly produce a full range of outputs such as HTML,
PDF, or Java Help from a Content Management System.

5. Content Management System (CMS)
Everyone is familiar with basic reuse—copying and pasting from one
document to another. But copying and pasting creates disconnect-
ed copies, which then must be updated separately [2].

In order to effi ciently use all DITA features, technical writers need to
use a powerful CMS. A CMS is a platform that allows large groups to
cooperate in the content creation and review phases. At fi rst glance
it is a storage tool for DITA XML fi les, as well as graphics and other
objects that can be used to create diff erent types of documents.
Crucial feature is the integration with an XML editor like Adobe
FrameMaker or oXygen. A CMS also provides versioning and branch-
ing mechanism to manage the relationships between thousands or
even millions of components.

One of the main advantages of a CMS is the ability to handle content
reuse. Reusing content lets you reduce content development costs
while simultaneously improving the quality of the information. The
technical writers’ goal is to create complete topics that can be re-
used as such in diff erent documents. This process is called single
sourcing.

6. Single Sourcing
These days business effi ciency is a key asset. In Customer Docu-
mentation we constantly work on increasing single-source author-
ing, which is a writing technique that allows content to be used
multiple times in many places. Single sourcing can be compared to

port teams. Testers check and verify the documented procedures
in a laboratory environment using relevant hardware and software
confi gurations. When an issue is found in the documentation, test-
ers report them in the relevant place (e.g. using dedicated tool such
as Quality Center) and technical writers need to update documenta-
tion accordingly. After a fi nal approval the document is published as
part of a specifi c product or system documentation library to Nokia
Online Services (NOLS) portal, available to our customers.

Customer Documentation follows R&D product lifecycle milestones
and contributes to almost all software and hardware deliveries. We
actively participate in feature development and testing. Currently
most of Nokia products are developed in Agile mode, and so is the
documentation. Close cooperation with technology experts makes
us more effi cient. Being fl exible and ready to adapt is our asset for
increasing value.

As Customer Documentation we went through a very long journey.
Now we are in the middle of a change of mindset. More information
and more types of information are available online. Users become
increasingly aware that they need more effi cient ways to fi nd the
information they need. Interface and information designers, devel-
opers and technical communicators must rise to the challenge. To
do this, we must employ the techniques of user-centered design to
understand user’s tasks and goals. We must fi nd ways to design the
user interaction in a way which matches the user’s needs, which is
easily learned, and which is effi cient, eff ective and engaging to use –
in other words, we must design for usability [3]. To satisfy increasing
customers’ demands we developed our new path and started the
Customer Documentation transformation project.

3. Transformation
At the heart of every great idea is a desire to evolve. Nokia Custom-
er Documentation strives to be on the cutting edge. We have built
our transformation strategy based on market trends, competitor
analysis, customer and internal feedback. We do not want to follow.
We desire to create new trends in technical communication market.
We decided to build a new documentation strategy on three main
pillars:

• Streamlined content
• Topic-based writing
• Rich media

4. Darwin Information Typing Architecture (DITA)
Creating documentation using the traditional static fi le approach is
very ineffi cient. Writers very often needed to struggle with lack of
synchronization between diff erent renditions e.g. *.doc and *.chm.
DITA solves this problem.

As the fi rst step of our transformation, we decided to migrate our
content to DITA. DITA is an Extensible Markup Language (XML),

Nokia Shaping the future of telecommunication. Check how the experts do it. 167Nokia Shaping the future of telecommunication. Check how the experts do it.166

• Correct. You cannot save technically incorrect information with
snazzy formatting

• Relevant. Accurate information is not enough—readers want
information that addresses their specifi c issue

• Concise. Most readers do not want to wade through huge
volumes of information to fi nd what they need

• Accessible. Readers must be able to get at the information; that
means, for example, providing graphics that do not use tiny type
and addressing the needs of readers with varying degrees of
literacy, visual acuity, computer skills, and so on

• Usable. Readers must be able to fi nd the information they want
and understand it [2].

In practice it means that technical writers create content that user
can read and understand, even when taken out from the context of
the document. Topics are created as separate instances and chained
by references and links. Minimalism concerns editing down content
until you provide exactly the right information (and no more) for the
user to perform the task or understand the concept basically, to
get the information they need at the point they need it. To apply
minimalism successfully, you need to understand the product very
well; frequently get feedback from users; and be willing to cut out
all non-essential content so that users are left with streamlined, us-
able content. Minimalism also means that you document the best
way to do something not all the ways to do something. By removing
all the extra information from the content, you are left with content
where each word has value. Users have to wade through fewer top-
ics of higher quality content. When every topic is well written, the
user can fi nd information quickly and the information they fi nd is
exactly the type of information they need. They can quickly read or
even scan the topic, get their answer and be done. The result: Maxi-
mum user satisfaction [7].

8. Beyond the documentation – User Experience (UX)
When words are not enough, what then? UX comes into play. UX in-
cludes the practical, experiential, aff ective, meaningful and valuable
aspects of human–computer interaction [8]. It is an umbrella term
describing all the factors that contribute to user’s overall percep-
tion of a product.

So, why is this so important for Customer Documentation? The world
of information is changing. Users require more attractive, accurate,
and visual ways of providing information. Documentation becomes
more engaging, interactive, and easy to use. Technical writers need
to consider usability, usefulness, and the aesthetic appeal of the
content. The main goal of the documentation is now usability, which
means that the people who use the product can do so quickly to
easily accomplish their own tasks.

What makes great UX? Great UX documentation is not just about
good looks. According to uxforthemasses.com, UX documentation
needs to be:

recycling, as many writers can access and use the same particular
chunk of information. Single source publishing is mostly initiated
by the wish to supply information from one source for a range of
media in order to keep contents consistent and minimize the cre-
ation eff ort.

Figure 3 Example of single sourcing concept.

The advantage of this approach is that when you have to update
your information, you can make a single change in a module that can
be refl ected in many documents at once through automatic repub-
lishing. This is much more eff ective and effi cient than fi nding each
document that must be updated, fi nding the specifi c information
that must be changed, and making the same change over and over
again, manually fi xing up the formatting for each document if the
change aff ects page breaks. The disadvantage of this approach is
that you must defi ne the rules for making changes, and that means
that you must fi rst declare ownership [6].

Single sourcing is not easy and sometimes causes communication
problems, especially in big virtual teams, but the idea is always
worth to consider. An important question that may be raised is
‘How can I change the content strategy to gain advantages of single
sourcing?’

7. Topic Based Writing and minimalism
Topic-based writing is an approach to structuring information.
The basic assumption is that writing refers to the content that is
chunked into short topics instead of longer pieces of information.
According to its main principles, content needs to be:

Technical Writer

2
TW

3
TW

4
TW

1
TW

Customer Documentation we have defi ned, piloted, and rolled out
several types of rich media:

• Interactive graphics, showing information fl ows
• Videos, showing detailed (mainly hardware) procedures
• Animations, presenting complex features in a more

comprehensive way
• E-learning-like solutions, giving more information about the

functionality or product

Main goal of rich media is to be eff ective and straight to the point
while presenting the information. Rich media is not only for mar-
keting purposes anymore. There is a high demand for multimedia
content in technical documentation. Using rich media to deliver
information can improve customer engagement and satisfaction.
This is now. How about the future? It is right behind the corner and it
is called augmented reality. Customer Documentation’s desire is to
create a solution that allows less experienced engineers to perform
e.g. troubleshooting procedure on a real life environment. However,
the key driver for successful troubleshooting is the remote support
like voice/video call between the fi eld engineer and remote support
expert. The key concept is to give real time instructions using e.g.
Google Glasses or virtual reality.

1. Useful – First and foremost a great UX document is useful to its
audience. It clearly contributes to the overall goal of the work
being undertaken– whether that has to create a design, defi ne
a strategy or carry out some research

2. Appropriate – A great UX document is appropriate to its purpose,
to the situation and to its audience.

3. Usable – Just like a usable interface, a great UX document is easy
to understand and use. Ideally it should be as self-explanatory as
possible

4. Presentable – A great UX document does not need to be a work of
art, but it should be presentable

5. Accessible – A great UX document should be easily accessible.
It should be easy to fi nd, easy to access and in a suitable fi le
format [9].

Nokia Customer Documentation found its own way to increase the
User Experience. Making documentation easy to fi nd, more engag-
ing, and attractive is now one of our main goals.

9. Rich media
Now, when more and more content is being delivered online, users
can go beyond static content by consulting videos and animations.
This multimedia information is often referred to as rich media. In

Figure 3 Example of rich media video.

Nokia Shaping the future of telecommunication. Check how the experts do it. 169Nokia Shaping the future of telecommunication. Check how the experts do it.168

Resources
 [1] G. Hiradas, “Information desing for documentation,”

Communicator, 2014.
 [2] S. S. O’Keefe and A. S. Pringle, Content Strategy 101,

Transform Technical Content into a Business Asset,
Scriptorium, 2012.

 [3] W. Quesenbery, “On Beyond Help: User assistance
and the user interface,” [Online]. Available:
http://www.wqusability.com/articles/on-beyond-help.html.

 [4] “W3C information and Knowledge Domain,” [Online].
Available: http://www.w3.org/XML/.

 [5] A. S. Pringle and S. S. O’Keefe, Technical Writing 101:
A Real-World Guide to Planning and Writing Technical Content,
Scriptorium Publishing Services, Inc., 2009.

 [6] PTC.com, “10 Secrets to a Successful DITA Implementation,”
PTC.com, 2007.

 [7] “techwirl.com,” [Online]. Available: http://techwhirl.com/
getting-started-with-topic-based-writing/. [Accessed 16 July
2015].

 [8] “wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/
User_experience. [Accessed 16 July 2015].

Evolution is braving new territory. By embracing new simulation
technologies we can improve engineers’ skills (in a similar way as air-
craft pilots) before they go into the fi eld and reduce troubleshoot-
ing costs signifi cantly.

10. Conclusion
Historically, technical communication has been a cottage industry
where each technical writer was responsible for a specifi c content
area. Today, technical communication is moving into a manufactur-
ing model. This approach requires a huge shift in mindset for ex-
perienced writers. Instead of owning all aspects of a book or help
system, writers become content contributors who collaborate to
produce a fi nal product [2]. Technical writers these days create
intelligent content, structurally rich and semantically categorized,
which can be therefore automatically discoverable, reusable, recon-
fi gurable, and adaptable [5].

Market trends and research analysis show that transforming from
static documentation to streamlined, single sourcing content is the
way forward. Achieving this and adding rich media to Nokia’s Cus-
tomer Documentation portfolio will help us to be one big step ahead.

Figure 5 Example of using augmented reality in Customer Documentation.

About the author

I studied Electronics and Telecommunications at the
Wrocław University of Technology. With six years of
experience gained as a technical writer, publishing
specialist, and Customer Documentation manager
I know how important technical content is for
overall product perception. I am fascinated by new
technologies and information design. Privately, I am
addicted to sport, mostly football.

Tomasz Prus
Manager, Customer Documentation
MBB R&D Mgmt and Automation

 [9] “UX for the masses,” [Online]. Available:
http://www.uxforthemasses.com/create-great-ux-documents/.
[Accessed 16 July 2015].

 [10] J. T. Hackos, Information Development, Indianapolis: Wiley
Publishing, Inc., 2007.

 [11] M. T.-S. Jörg Hennig, Technical Communication – international,
Today and in the Future, Lübeck: Schmidt-Römhild, 2005.

 [12] J. Hackos, Managing Your Documentation Projects, Canada:
Wiley, Inc., 1994.

 [13] J. K. Christopher Turk, Eff ective Writing, Improving scientifi c,
technical and business communication, New York: Taylor
& Francis e-Library, 1989.

Nokia Shaping the future of telecommunication. Check how the experts do it. 171Nokia Shaping the future of telecommunication. Check how the experts do it.170170

Best Engineering Practices

 Maciej Kohut
Security Solution Engineer
MBB Security

Design for Security

This brief article provides a high-level overview of the security of
the product/program in the process of its creation. Security is
a constant process, which is also going through the whole process
of creation of the product, like software in this case. The article may
be seen as an incentive to search for deeper knowledge of security
issues.

1. Main security principles
There are three main security principles of protecting a system. This
is the so-called CIA Triad, which include:

• Confi dentiality – guarantee that unauthorized disclosure of
information is prevented

• Integrity – correctness and consistency of data stored and
handled by the reliable system

• Availability – guaranteed, reliable access to the services or
system for authorized users

All of those three principles must be respected during every phase
of the new system/application creation process. Only with this con-
dition fulfi lled, we can try to make secure software. So, fi rst we
should have a clear understanding of what the implementing of se-
curity in products means. This is often confused, especially when
security of product is perceived as a mere implementing of security
features.

Let us consider an LTE example, where the communication chan-
nels are secured by means of encrypted tunnels. Such encrypted
tunnels are certain security features, but deploying them does
not necessarily make a solution secure due to the fact that these
tunnels are terminated somewhere, for example on a BTS like in
this case. So, if the BTS itself is not secured, an attacker can po-
tentially hack the BTS and see the communication between users
or terminals even if this communication is encrypted between
the terminal and the Base Station. This is a case when the (unse-
cured) BTS confi dentiality is not provided, although the encryp-
tion is applied.

A good example of threats against any IT system is briefl y described
by the STRIDE [11] approach. This acronym stands for:

• Spoofi ng identity
• Tampering with data
• Repudiation
• Information disclosure
• Denial of service
• Elevation of privileges

Last but not least, apart from the security principles defi ned by
the CIA Triad, there are some more that should be considered: au-
thenticity, trustworthiness, privacy, accountability, auditability and
non-repudiation.

2. Design for security as a process
Design for security is a proactive process that embraces security
issues not covered by other development processes. It could be said
that it integrates security into the development lifecycle, thus rais-
ing the entire security level.

In the product creation process, the goal is to prevent all the se-
curity principles from being violated, no matter if intentionally or
accidentally. To help achieve this goal, there are several actions to
be taken, as briefl y discussed in further paragraphs.

Software developers should keep focus on security at every stage
of creating an application. Security is a process just like creating/de-
veloping of the product is. Both should be running in parallel as illus-
trated in Figure 1 . Early phases of the creation process, when the
feature screening occurs, should also involve identifi cation, analy-
sis and classifi cation of threats and risks. Simultaneously, end-user
data should be identifi ed and classifi ed in order to make possible
privacy risk assessment. When all or most features of the product
are specifi ed, and the system design phase takes place, security re-
quirements of the product should be specifi ed. Results of threat
and risk analysis should serve as a basis for this process. Every fea-
ture has to be assessed and risks have to be prioritized. Probability
and criticality of threats and risks, as well as security measures to
minimize the risks have to be defi ned.

A product should be described on a high-level Security Architecture
Specifi cation to defi ne how the security requirements are to be
met. This kind of document should include a description of how all
the security and privacy related features of applications, platforms,
and network elements are handled. Some of those features concern
data and software security, protocols, and traffi c separation, as well
as communication matrix.

A newly created product frequently uses third party software, which
is often an open source, (for example operating systems like Linux,
open databases and so on). Any security gaps in this kind of addi-
tional component are unacceptable, therefore it is crucial to have
knowledge of any security vulnerabilities they might have. That
is why a Security Vulnerability Monitoring (SVM) process should
be triggered for third party components as early as possible, and
continued throughout the whole process of creating the product.
Furthermore, the process should be kept in use even after the fi rst
stable release is published.

3. Secure coding
 Let us now discuss in a little bit more details the question of the
secure coding phase [11]. Avoiding mistakes that could cause an ex-
ploitable vulnerability seems an obvious goal. Security hardening is
one of the integral elements of secure coding. It is about fi xing se-
curity holes in the code itself. There are several techniques of doing
that, for example adding code that validates inputs or replacing any

Nokia Shaping the future of telecommunication. Check how the experts do it. 173Nokia Shaping the future of telecommunication. Check how the experts do it.172

a sort of paranoid approach. To respect Murphy’s law would not be
a bad idea here. Security by obscurity should be prohibited. Treating
the source code as widely open to the public is a good approach.
The code should be written in a homogenous style throughout the
whole project so that it is easy to read, well documented and unam-
biguous. Maintaining of a code written this way is more effi cient and
secure. The “principle of least privilege” is very important too. Every
process runs with some privileges of the user or process that has

unsafe string function calls that are buff er-size-aware. On the Inter-
net there are many sources of information about principles of code
hardening for many programming languages. The program should
be robust which means that even if there are any unexpected events
(for example, abnormal data input), the program will not crash itself
or, what is even worse, the whole system. One of the best known
examples of such an attack is “ping of death” [21]. Situations like
that should be avoided at any cost. Every developer should have

Figure 1 Design for Security in the timeline.

Timeline

Feature Screening

System Design

Risk and threat Analysis

Security Requirements

Privacy Risk Assessments

Security Architecture Specifi cation

Integration and Verifi cation

Software Development

Next release

Security Testing

Security Auditing

Product Security Compliancy Statement

Up- to- date security patch level

First stable
release

 Update SVM process

Security Hardening

Secure Coding

Secure Design

Security Vulnerability Monitoring

implemented by this time, and secure testing checks if this imple-
mentation is correct. It must be assured that data can be accessed
only via the strictly defi ned interfaces and methods, not any other
way. In addition, the system should not be vulnerable to attack in
the production environment. It needs to be robust against failing to
function correctly because of other elements which this product will
be integrated with. Specifi ed tests against security requirements
and known or unknown security vulnerabilities must be performed.
There are a lot of tools available that can help with automation of
these tests in many areas. For example, nmap [6], NESSUS [7], Open-
VAS [8], QualysGuard [14] and other security vulnerability scanners
can help to automate checks if security vulnerabilities still exist.
Communication matrix and fi rewalls or access control list could be
checked with for example nmap, hping3 [9], and many more.

Another area of security testing is web application vulnerability
scanning, which can be performed by means of, for example, Accu-
netix [10], Burp [16], or Nikto [17].

Last but not least, there are robustness testing and (distributed)
denial-of-service testing. For those you can use, for example, Code-
nomicon [15], hping3.

After the security testing is done, there should be generated a re-
port listing all the activities and results. This kind of document can
be used in future releases as a reference.

Every product creation process should have a person appointed
the product security manager. This person will be responsible for
fi lling in a Security Statement of Compliance, which is a method of
tracking implementation of requirements defi ned by earlier phases
of Design for Security process. It is required to have a complete view
of the level of security. Moreover, customer documentation should
be created with respect of privacy principles.

After the product is stable and ready to be released, a security audit
should be performed. Optimally, an independent third party auditor
should be engaged to inspect the product and ensure compliance
with Security Policy. It is recommended that this kind of security
audit be performed at least once in the product lifecycle.

6. Summary
This article is only a brief overview of what the process of creating
a secure application/system, or a secure product in general, looks
like. It is advised that the reader keep in mind the importance of
the Design for Security process. Everyone can explore the topic
in a range that is closest to his or her work on the product. Be it
an architect, designer, developer, tester, engineer – in the Design
for Security process there is room for contribution from every-
body. Nokia off ers its employees the “Product Security Education
Journey – Orange belt” [20] course, which deals with the topics in
more detail.

triggered it. If this user or parent process runs with restricted privi-
leges, the amount of potential damage an attacker can do is limited
even if the attacker successfully hijacks the program into running
malicious code.

It is very important for every developer to know the secure coding
guidelines. Samples of guidelines for many programming languages
can be easily found on the Internet. The Top 25 Most Dangerous
Software Errors [2] can be treated as a base for research on how to
make a secure code. What is no less signifi cant is to use a SCA (Static
Code Analysis) tools, which allow to fi nd out not only typing errors,
but real vulnerabilities like buff er overfl ows, memory leaks, unini-
tialized data (which could make injection of some unexpected data
possible), and so on. It is possible to simulate runtime behavior to
look into any possible execution path. Although using of SCA tools
could be very helpful, it cannot replace human review entirely. Keep
in mind that such tools are not smart enough, and can provide false
positives or negatives. An example of an SCA tool for the Java and
C/C++/C# is Klocwork [3].

4. Security hardening
Next phase of software development is security hardening [13].
Usually, this process relies on reducing the surface of the system
vulnerability. How is that achieved? The fi rst rule is: multipurpose
system is less secure than a single-function one. Therefore, by re-
moving unnecessary software, services, usernames, or logins, we
reduce available vectors of attack. Hardening will touch all system
components: operating system, services, databases, and so on.
Network access should be limited to only necessary services – for
example by using fi rewall features, access control list and similar.
If possible, banners, messages of the day and other information
presented by network services should be modifi ed to make it hard-
er to fi nd out what version of software is running on the system.
Sometimes this is not possible, especially when the service has to be
compliant with specifi ed standards or diff erent clients. For example,
in order to change open SSH server to hide information about its
version, which is displayed in every connection by default, you need
to modify the source of this service and recompile it. Cryptography
should be used whenever possible, plain text information should not
be sent throughout the network. Passwords should not be stored
without strong cryptography, and should be checked whether they
match the strong password policy defi ned. System rights should
be defi ned and enforced by access control list or a similar mecha-
nism. There are many guidelines on the Internet dedicated to how to
harden particular systems and services. One can also use automatic
tools like bastille-linux [4].

5. Security testing
Security testing [12] is part of the integration and verifi cation
phase within the new product creation process. It is a crucial part
as it allows ensuring that nothing has been missed out in the pre-
vious phases. All the protection and hardening functions should be

Nokia Shaping the future of telecommunication. Check how the experts do it. 175Nokia Shaping the future of telecommunication. Check how the experts do it.174

[11] https://collaboration.int.nokia.com/sites/SecurityTechnologies/
SitePages/Secure%20Coding.aspx

[12] https://collaboration.int.nokia.com/sites/ProductSecurity/
SitePages/Security%20Testing.aspx

[13] https://collaboration.int.nokia.com/sites/ProductSecurity/
SitePages/Security%20Hardening.aspx

[14] https://www.qualys.com/
[15] http://www.codenomicon.com/
[16] http://portswigger.net/burp/
[17] https://cirt.net/Nikto2
[18] https://collaboration.int.nokia.com/sites/ProductSecurity/

SitePages/Security%20Processes.aspx
[19] https://twiki.inside.nsn.com/bin/view/SecurityWiki/DfsecFaq
[20] Product Security Education Journey – Orange belt

(Courses: PSJOGS-01A, PSJOSC-01A, PSJOPO-01A,
PSJOST-01A, PSJOVM-01A)

[21] https://en.wikipedia.org/wiki/Ping_of_death

References
 [1] https://www.securecoding.cert.org/confl uence/display/sec-

code/CERT+Coding+Standards
 [2] http://cwe.mitre.org/top25/
 [3] http://www.klocwork.com/
 [4] http://bastille-linux.sourceforge.net
 [5] http://www.oracle.com/technetwork/java/seccode-

guide-139067.html
 [6] http://nmap.org
 [7] http://www.tenable.com/products/nessus-vulnerability-scanner
 [8] http://www.openvas.org
 [9] http://www.hping.org/hping3.html
 [10] https://www.acunetix.com
 [11] https://msdn.microsoft.com/en-us/library/

ee823878(v=cs.20).aspx
[10] https://developer.apple.com/library/mac/documentation/

Security/Conceptual/SecureCodingGuide/Introduction.html#//
apple_ref/doc/uid/TP40002415

About the author

I work as a Security Solution Engineer in MBB Security
Department. Our R&D department creates security
orchestration software for Telco Cloud. As security
solution engineers we are responsible for building,
maintaining, and supporting lab environment, doing
research and testing security products like fi rewalls,
IPS and so on, as well as integrating those products
into the Cloud environment based on OpenStack and
VMware.

Maciej Kohut
Security Solution Engineer
MBB Security

Nokia has been established in Wrocław since 2000 with The European Software and Engineering
Center in Wrocław. We host a wide range of projects such as Customer Experience Management
& Operations Support Systems, Radio Frequency Software, System Module, Single Radio Access
Network, Long Term Evolution, R&D Management and Automation, Customer Support, Liquid Core,
Technology & Innovation, Value Creation Management and Security.

We deliver telecommunication solutions and technologies to one
quarter of the world’s population. We provide the world’s most
effi cient mobile networks, the intelligence that maximizes the value
of those networks, and the services that make it all work seamlessly.

Their sophisticated equipment gives great research potential to our
labs. They are optimized for testing our software against a myriad
of hardware confi gurations, starting from applications designed for
individual clients, right down to the most technologically advanced
telecommunications solutions not yet available on the consumer
market.

R&D in Wrocław has an impact on every development stage of our
wireless access technologies. Our employees contribute to each step
of the processes that give shape to our telecommunication solutions:
from architecture modeling, requirement building and implementation,
down to system verifi cation and component testing in our laboratory
environment.

Laboratory of the Nokia in Wrocław in numbers – cables

Laboratory of the Nokia in Wrocław in numbers – space

Achievement
We work together to deliver superior
results and win in the marketplace.

Challenge
We are never complacent and
perpetually question the status quo.

Respect
We treat each other with respect and
we work hard to earn it from others.

Renewal
We invest to develop our skills
and grow our business.

The foundation of Nokia’s culture lies in our
four clear and timeless values – Respect,
Achievement, Renewal and Challenge.

They lead and help us in making the right
decisions, as well as in operating within the
Nokia community on a daily basis.

We would like to show our appreciation and thank the entire project team for
their engagement and outstanding contributions in making this unique book
possible:

Tomasz Feliksik, Łukasz Grządko, Grzegorz Olender, Marcela Stopińska, and
Sławomir Zborowski for all their good ideas in coordinating and supervising
the work.

Thomas Athelstan-Price, Daniel Barrio Fierro, Monika Berlińska, Anna Czołpiński,
Joanna Pucińska, Tomasz Prus and Daniel Rowiński for their translation, proof-
reading and editorial eff orts.

And fi nally, Martyna Kosiorek, for the idea from which everything started.

Acknowledgements

© 2015 Nokia

© 2015 Nokia

Strzegomska Street 36
53-611 Wrocław
Reception 1st Floor, Green Towers B
Opening hours 8:00 – 18:00
Phone: +48 71 777 3800
Fax: +48 71 777 30 30

Strzegomska Street 54a
53-611 Wrocław
Reception Ground Floor, Wrocław
Business Park
Opening hours 8:00 – 18:00
Phone: +48 777 38 01

Bema Street 2
50-265 Wrocław
Reception Entrance A, 4th Floor
Opening hours 8:00 – 18:00
Phone: +48 71 777 41 30
Fax: +48 71 777 41 98

Lotnicza Street 12
54-155 Wrocław
Reception Ground Floor, West Gate
Opening Hours 8:00 – 18:00
Phone: +48 71 777 4002
+48 71 777 4001

e-mail: kontakt@nokiawroclaw.pl
www.nokiawroclaw.pl

	Shaping the future of telecommunication
	Dear Readers
	Table of Contents
	1. Advanced Telecommunication Technologies
	1.1 Przemysław Szufarski
	1.2 Bartłomiej Dabiński and Marcin Otwinowski
	1.3 Karol Drażyński and Maciej Januszewski
	1.4 Sławomir Andrzejewski, Ireneusz Jabłoński, John Torregoza, Krzysztof Waściński

	2. Telecommunication System Engineering
	2.1 Grzegorz Olender
	2.2 Michał Koziar and Zdzisław Nowacki
	2.3 Radosław Idasiak
	2.4 Szymon Góratowski
	2.5 Marek Salata
	2.6 Krzysztof Kościuszkiewicz and Karol Sydor

	3. Professional Software Development
	3.1 Sławomir Zborowski
	3.2 Krzysztof Bulwiński
	3.3 Bartosz Kwaśniewski
	3.4 Bartosz Woronicz
	3.5 Michał Bartkowiak
	3.6 Krzysztof Garczyński and Piotr Rotter
	3.7 Łukasz Grządko

	4. Best Engineering Practices
	4.1 Tomasz Krajewski
	4.2 Dawid Bedła
	4.3 Andrzej Lipiński
	4.4 Marcin Gudajczyk
	4.5 Tomasz Prus
	4.6 Maciej Kohut

	Nokia

